
Öklid’in Porizmalar ’ı için
Derleme’nin

VII. Kitabının
 Lemmasından
İlk  Lemma

İskenderiyeli Pappus
Çeviren David Pierce

 Mart 

Matematik Bölümü
Mimar Sinan Güzel Sanatlar Üniversitesi

mat.msgsu.edu.tr/~dpierce

polytropy.com/geometriler



Bu çalışma
Creative Commons Attribution-Gayriticari-ShareAlike .

Unported Lisansı ile lisanslı.
Lisansın bir kopyasını görebilmek için,

http://creativecommons.org/licenses/by-nc-sa/3.0/

adresini ziyaret edin ya da mektup atın:
Creative Commons,

 Castro Street, Suite ,
Mountain View, California, , USA.

CC BY: David Pierce $\

C

david.pierce@msgsu.edu.tr



İçindekiler

Giriş 

Oranlar ve orantılar 

Thales, Pappus, ve Desargues 

Pappus’tan  Lemma 

Lemma I 
İkinci kanıtı . . . . . . . . . . . . . . . . . . . . . . . 

Lemma II 

Lemma III 
İkinci kanıtı . . . . . . . . . . . . . . . . . . . . . . . 

Lemma IV 

Lemma V 

Lemma VI 

Lemma VII 

Lemma VIII 

Lemma IX 





Lemma X 

Lemma XI 

Lemma XII 

Lemma XIII 

Lemma XIV 

Lemma XV 

Lemma XVI 

Lemma XVII 

Lemma XVIII 

Lemma XIX 

Ek 
Fiiller Sözlüğü . . . . . . . . . . . . . . . . . . . . . . 
Edatlar Sözlüğü . . . . . . . . . . . . . . . . . . . . . 
Yunan Alfabesi . . . . . . . . . . . . . . . . . . . . . 

Kaynakça 

Analiz Hazinesi ’nin içindekiler 

 Pappus



Giriş

İskenderiyeli Pappus (Πάππος Ἀλεξανδρεύς), m.s.  yılı ci-
varında Derleme (Συναγωγή) adlı eserini yazdı. Derleme’nin
yedinci kitabı, Analiz Hazinesi (Αναλυόμενος τόπος) adlı eser-
ler için bir rehberdir. Hazine’nin içindekiler, şimdi okuduğu-
nuz kitapçığın arka sayfasındadır. (Bu bilgi, [, s. , –
] kaynağında bulunur.) Apollonius’un Koni Kesitleri ve
Öklid’in Veriler ’i hariç, Hazine’nin çoğu şimdi kaybolmuştur.
Özel olarak Öklid’in Porizmalar ’ı (Πορίσματα) kaybolmuştur.
Ama onu okumaya yardımcı olmak için, Pappus  lemmayı
verir. Onların ilk ’nun çevirisi, bu kitapçığı oluşturur.

Altıgen ve Dörtgen teoremleri

Pappus’un Lemma I’i ve Lemma XIX’u arasından iki önemli
teorem çıkar. Her biri bir düzlemde doğrudur.

. Birbirinden farklı olan altı nokta verilsin ve A, B, C, D,
E, ve F olsun. Ayrıca Şekil ’deki gibi E noktası, AC doğru-
sunda olsun ve F noktası, BD doğrusunda olsun. Burada bir
doğru, doğru parçası değildir, sınırsız bir doğrudur. Özel olarak
A, C, ve E’nin sırası ve B, D, ve F ’nin sırası önemli değildir.
Şimdi AB, BC, CD, DE, EF , ve FA doğrusu, bir altıgenin
kenarıdır. Altıgenin kendisi, ABCDEF olarak yazılabilir. Bu
altıgenin karşıt
• AB ve DE kenarı G’de,
• BC ve EF kenarı H ’de,
• CD ve FA kenarı K’de


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Şekil : Altıgen Teoremi

kesişsinler. Altıgen Teoremi’ne göre K noktası, GH doğrusun-
dadır. Kısaca eğer bir altıgenin köşeleri münavebe ile iki doğ-
ruda oturursa, o zaman altıgenin karşıt kenarlarının kesişim
noktaları da bir doğruda oturur.

. Şimdi dört nokta verilsin, ve bunlardan hiçbir üçlü bir
doğruda oturmasın. Dörtgen Teoremi’ne göre, eğer bu dört
noktanın ikilerinden geçen altı doğru bir doğruyu keserse, o
zaman kesişim noktalarından beşi, altıncıyı belirler. Örneğin
Şekil ’de GHKL dörtgeninin köşelerinin ikisinden geçen doğ-
rular, AF doğrusunu A, B, C, D, E, ve F noktalarında keser,
ve MNPQ dörtgeninin köşelerinin ikisinden geçen beş doğru,
sırasıyla A, B, C, D ve E noktalarından geçer, dolayısıyla ka-
lan PQ doğrusu, F noktasından geçer.

Aslında Altıgen ve Dörtgen Teoremi’nin her birinin sadece
bir durumunu verdik. Teoremlerde kesişmek yerine iki doğru

 Pappus
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Şekil : Dörtgen Teoremi

paralel olabilir. Örneğin eğer Şekil ’teki gibi ABCDEF al-
tıgeninde karşıt CD ve FA kenarları paralel ise, o zaman bu
kenarlar GH ’ye paraleldir.

Öklid’in Porizmalar ’ı için Pappus’un lemmalardan:
) Lemma VIII, XII, ve XIII, Altıgen Teoremi’nin bazı du-

rumlarıdır, ve son iki lemma, Lemma III, X, ve XI’i kul-
lanır;

) Lemma I, II, IV, V, VI, ve VII’nin konusu, Dörtgen Te-
oremi’dir.
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C E

D

B

F

A

G

H

Şekil : Altıgen Teoremi’nin başka bir durumu

İzdüşümsel geometri

Eğer Altıgen veya Dörtgen Teoremi’nin bir durumunun şekli
cama çizilirse, o zaman şeklin gölgesi veya izdüşümü, teoremin
aynı veya farklı bir durumunun şekli olur. Kısaca teoremlerin
her biri, izdüşümsel (veya projektif ) düzlem geometrisinin bir
teoremidir. Bu geometride iki doğru her zaman bir noktada
kesişir.

Öklid düzleminden izdüşümsel düzlemi elde etmek için, son-
suzda olan noktalar ekleriz. Bunu anlamak için, Öklid’in eşitlik
ve paralellik kavramlarına bakarız.

Öklid’in Öğeler ’inde eşit (ἴσος), aynı (αὐτός) değildir, ama
bir şey, kendisine eşit olarak kabul edilir. Örneğin Kitap I’in
Önerme ’üne göre ABC ve DEF üçgeninde, eğer Şekil ’teki
gibi

 Pappus
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Şekil : Öklid I. ve 
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Şekil : Öklid I.

AB = DE, BC = EF, ∠ABC = ∠DEF

ise, o zaman

AC = DF, △ABC = △DEF,

∠BCA = ∠EFD, ∠CAB = ∠FDE.

Önerme ’te eğer öyle bir ABC üçgeni verilirse ki AB = AC
ise, ve Şekil ’teki gibi
• AB, öyle bir E noktasına,
• AC, öyle bir F noktasına
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uzatılırsa ki AE = AF ise, o zaman ∠CAE ve ∠BAF , ∠BAC
ile aynı olduğundan birbiriyle aynıdır, dolayısıyla birbirine eşit
sayılabilir. Bu durumda

CA = BA, AE = AF, ∠CAE = ∠BAF,

dolayısıyla, Önerme  sayesinde,

CE = BF, △CAE = △BAF,

∠AEC = ∠AFB, ∠ECA = ∠FBA.

Böylece Öklid için bir açı, kendisine eşit olarak sayılabilir. Ben-
zer bir şekilde bir doğru, kendisine eşit olarak sayılabilir. Ör-
neğin Önerme ’e göre ABC ve DEF üçgeninde, eğer Şekil
’teki gibi

AB = DE, BC = EF, AC = DF

ise, o zaman

∠ACB = ∠DEF, ∠BAC = ∠EDF, ∠ABC = ∠DEF.

Önerme ’da bir BAC açısı verilmiş olduğunda, eğer Şekil
’daki gibi AB = AC ise, ve eşkenar BCD üçgeni inşa edi-
lirse, o zaman ABD ve ACD üçgenlerinde

AB = AC, BD = CD,

ve ayrıca AD ortak olduğundan kendisine eşit sayılır, dolayı-
sıyla, Önerme  sayesinde,

∠BAD = ∠CAD.

Bu şekilde bir açı ikiye bölünür.

 Pappus
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Şekil : Öklid I.

Kısaca açıların ve doğruların eşitliği, yansımalı bir bağıntı-
dır. Öklid için eşitliğin simetrik olduğu açıktır. Ortak bir kav-
ram sayesinde aynı şeye eşit olanlar birbirine eşit olduğundan,
eşitlik geçişlidir. Böylece eşitlik bir denklik bağıntısıdır.

Benzer bir şekilde bir doğru, kendisine paralel olarak sayı-
labilir. O zaman Öklid’in Öğeler ’inin Kitap I’inin
Önerme ’i sayesinde verilen bir noktadan geçen, verilen bir

doğruya paralel olan bir doğru çizilebilir;
Önerme ’una göre aynı noktadan geçen, aynı doğruya pa-

ralel olan başka bir doğru yoktur;
Önerme ’una göre aynı doğruya paralel olan doğrular bir-

birine de paraleldir.
Bundan dolayı paralellik, bir denklik bağıntısıdır.

Doğruların her paralellik sınıfı için, Öklid düzlemine yeni bir
nokta ekleyebiliriz. Eklenen nokta, sonsuzdadır, ve paralellik
sınıfındaki doğrular, bu sonsuzda olan noktada kesişir.

Tüm sonsuzda olan noktalar, sonsuzdaki doğruyu oluştu-

Giriş 



rur. Öklid düzleminin noktaları ve sonsuzda olan noktalar,
izdüşümsel düzlemin noktalarıdır, ve Öklid düzleminin doğ-
ruları ve sonsuzdaki doğru, izdüşümsel düzlemin doğrularıdır.
İzdüşümsel düzlemde Altıgen ve Dörtgen teoremlerinden her
birinin tek bir durumu vardır.

Oran ve orantı

Pappus, Altıgen ve Dörtgen teoremlerini Öklid düzleminde ka-
nıtlar, ve bunun için alanlar ve orantılar kullanır.

Açılar ve doğrular için gördüğümüz gibi eşitlik, bir denklik
bağıntısıdır.
• Sınırlanmış bir doğrunun eşitlik sınıfı, doğrunun uzunlu-

ğudur.

• Sınırlanmış bir yüzeyin eşitlik sınıfı, yüzeyin alanıdır.

• Sınırlanmış bir cismin eşitlik sınıfı, cismin hacimidir.

Her sınırlanmış doğru, yüzey, veya cisim, bir büyüklüktür (τὸ
μεγέθος). Cinsi aynı olan iki büyüklüğün oranı (ὁ λόγος) vardır.
Eğer büyüklüklerin birinin yerini eşit bir büyüklük konulursa,
oran değişmez. Bu şekilde iki uzunluğun, alanın, veya hacmin
oranı vardır.

Oranların soyut kuramı, Öğeler ’in Kitap V’indedir. Öklid’in
tanımladığı her oranı, pozitif gerçel sayı olarak görebileceğiz.

Aslında Öklid, oranları değil, sadece büyüklüklerin oranının
aynı (ἀνάλογον) olmasını tanımlar. Öklid’in tanımı aşağıda ve-
rilir; şimdilik tanımın sadece kullanacağımız sonuçlarını vere-
ceğiz.

Bir ΑΒ doğrusunun, bir Γ∆ doğrusuna oranı vardır. Bu oranı

ΑΒ : Γ∆

olarak yazacağız; Pappus

 Pappus



λόγος ὃν ἔχει ἡ ΑΒ πρὸς τὴν Γ∆

(ΑΒ’nın Γ∆’ya oranı)

ifadesini kullanıyor.
Eğer ΑΒ ve Γ∆ doğru ise, genişliği ΑΒ’nın uzunluğu olan ve

yüksekliği Γ∆’nın uzunluğu olan bir dikdörtgen inşa edilebilir,
ve bu dikdörtgeni

ΑΒ · Γ∆
ifadesiyle yazacağız; Pappus

τὸ ὑπὸ ΑΒ Γ∆ (ΑΒ ve Γ∆ altındaki)

ifadesini kullanıyor. Şimdi ΑΒ · Γ∆ dikdörtgeninin, bir ΕΖ · ΗΘ
dikdörtgenine oranı vardır. Bu oranı

ΑΒ · Γ∆ : ΕΖ · ΗΘ

olarak yazacağız.
Öğeler ’in Kitap I’inin . ve . önermelerine göre aynı pa-

ralellerde olan ve eşit tabanlarda olan iki paralelkenar veya
üçgen birbirine eşittir. Tabanlar eşit olmasa bile onların oranı
vardır, ve çokgenlerin oranı da vardır, ve Kitab VI’nın ilk öner-
mesine göre bu iki oran aynıdır.

İki oranın aynılığı, bir orantıdır (ἡ ἀναλογία). Eğer böyle
bir aynılığı :: işareti ile gösterirsek, o zaman Şekil ’de

AD :DB :: ADE :DBE,

AE : EC :: ADE :DCE

orantıları vardır. Ayrıca eğer

DE ‖ BC

Giriş 
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Şekil : Thales Teoremi

ise, o zaman
DBE = DCE,

ve bu durumda

ADE :DBE :: ADE :DCE,

dolayısıyla
AD :DB :: AE : EC.

Bu sonuç ve tersi, Öklid’in Önerme VI.’sidir, ve bugün ona
Thales Teoremi denir. Pappus bu teoremi sık sık kullanır.

Şimdi bir
A : B :: C :D

orantısı verilsin. Oranların aynılığı bir denklik bağıntısı oldu-
ğundan

C :D :: A :B

orantısı da doğrudur. Ayrıca Öğeler ’in Kitap V’ine göre
• tersine (ἀνάπαλιν)

B : A :: D : C,

 Pappus



• toplamayla (συνθέντι)

A+B :B :: C +D :D,

• çevirmeyle (ἀναστρέψαντί) A > B ise

A− B :B :: C −D :D,

• izlemeyle (ἐναλλάξ) A’nın C’ye oranı varsa

A : C :: B :D.

Bir kural daha vardır: eşitlikten (δι´ ἴσου)

A :B :: D : E

B : C :: E : F

}

ise A : C :: D : F,

ve daha genelde, eğer A1, . . . , An ve B1, . . . , Bn büyüklükleri
verilirse, ve her durumda

Ak : Ak+1 :: Bk :Bk+1

ise, o zaman eşitlikten

A1 : An :: B1 :Bn.

Herhalde Öklid “eşitlikten” diyor çünkü çokluklar olarak
Ak’lerin ve Bk’lerin sayıları birbirine eşittir.

Tanıma göre A : B ve B : C oranlarının bileşimi (συνάπτω
fiilinden συνημμένος), A : C oranıdır. Eğer

B : C :: D : E

ise, o zaman A :C oranı, A :B ve D :E oranlarının bileşimiyle
aynıdır, ve bu orantıyı

A : C :: (A :B)(D : E)

biçiminde yazacağız. Örneğin aşağıdaki Lemma I’in iki kanı-
tında Pappus

Giriş 



ὁ τῆς Α∆ πρὸς τὴν ∆Ζ συνῆπται
ἔκ τε τοῦ τῆς ΑΒ πρὸς τὴν ΒΕ

καὶ τοῦ τῆς ΕΘ πρὸς ΘΗ

(Α∆’nınki ∆Ζ’ya bileşir
ΑΒ’nınkinden ΒΕ’a

ve ΕΘ’nınkinden ΘΗ’ya)

orantısını yazıyor; bunu

Α∆ : ∆Ζ :: (ΑΒ : ΒΕ)(ΕΘ : ΘΗ)

olarak yazacağız. Lemma III’te Pappus

τοῦ ὑπὸ ΘΕ ΗΖ πρὸς τὸ ὑπὸ ΘΗ ΖΕ συνῆπται
λόγος

ἔκ τε τοῦ ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ

καὶ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς τὴν ΗΘ

(ΘΕ ΗΖ altındakinin ΘΗ ΖΕ altındakine bileşir
oranı

ΘΕ’nınkinden ΕΖ’ya
ve ΖΗ’nınkinden ΗΘ’ya)

orantısını yazıyor; bunu

ΘΕ · ΗΖ : ΘΗ · ΖΕ :: (ΘΕ : ΕΖ)(ΖΗ : ΗΘ)

olarak yazacağız.

Pascal Teoremi

Altıgen Teoremi’nin daha genel bir biçimi vardır. Bir altıgenin
köşeleri bir koni kesitindeyse, karşıt kenarların kesişim nokta-
ları bir doğrudadır. Örneğin Şekil ’de A, B, C, D, E, ve F

 Pappus
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Şekil : Parabolde Altıgen Teoremi

noktaları bir paraboldedir, ve (sonuç olarak) G, H , ve K bir
doğrudadır.

Bi altıgenin karşıt kenarlarının kesişmesi için onlar uzatıl-
mak zorunda olabilir. Örneğin Şekil ’da A, B, C, D, E, ve
F noktaları bir hiperbolün dallarındadır, ve (sonuç olarak) G,
H , ve K bir doğrudadır.

Dediğimiz gibi, bir altıgenin karşıt kenarları paralel olabilir.
Örneğin Şekil ’da, AF ve CD birbirine paralel ise, o zaman
GH de onlara paraleldir.

Altıgen Teoremi’nin genel biçimine Pascal Teoremi denir,
çünkü Blaise Pascal  yılında,  yaşında, teoremi bildirdi.
(Pascal’in orijinali, [] kaynağındadır; İngilizce çevirisi, [,
s. –] ve [, s. –] kaynaklarındadır.)

Giriş 
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Şekil : Hiperbolde Altıgen Teoremi

Porizmalar

Proklus’a göre porizma (τὸ πόρισμα) sözcüğünün iki anlamı
vardır ([, s. ] veya [, s. –] kaynaklarından).

. Birinci anlamına göre bir porizma, kanıtının başka bir
önermenin kanıtından kolayca çıktığı bir önermedir.

. İkinci anlamına göre bir porizma, önermelerin üçüncü bir
çeşitidir:
bir teoremde bir şey görülüyor ;
bir problemde bir şey yapılıyor ;
bir porizmada bir şey bulunuyor.

 Pappus
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Şekil : Elipste Altıgen Teoremi’nin paralel durumu

Örneğin

• ikizkenar bir üçgenin tabanındaki açılarının eşitliği bir
teoremdir;
• verilen açıyı ikiye bölmek bir problemdir;
• bir dairenin merkezini bulmak bir porizmadır.

Öklid’in Öğeler ’inin Kitap VII’nin Önerme ’sinde, birbirine
asal olmayan iki sayının en büyük ortak böleni bulunur. Bu
şekilde o önerme bir porizmadır, ve bundan birinci anlamıyla
bir porizma çıkar: birbirine asal olmayan sayıların her ortak
böleni, en büyük ortak bölenini böler.

Giriş 



Orantıların tanımı

Bir büyüklüğün katı (πολλαπλάσιον) alınabilir. Örneğin Α bir
büyüklük ise, katları

Α, Α+ Α, Α+ Α+ Α, . . .

toplamlarıdır. Bunlar Α, 2Α, 3Α, . . . olarak yazılabilir. Α gibi
Α’nın katları, büyüklüktürler. Aslında Α’nın herhangi bir katı

kΑ

biçiminde yazılabilir. Buradaki k katsayısı, bir sayma sayısıdır.
Sayma sayılarının oluşturduğu küme

N

olarak yazılabilir, ve k’nın sayma sayısı olduğunu göstermek
için

k ∈ N

ifadesini yazarız; ama Öklid bunun gibi ifadeler kullanmaz.
Öklid için k ifademiz, isim değil, sıfat olurdu. Aslında Öğe-
ler ’in yedinci kitabındaki tanıma göre bir sayı (ὁ ἀριθμός),
birimlerin (τὰ μονάδα) oluşturduğu bir çokluktur (τὸ πλῆθος).
Bu tanıma göre bir kΑ katının kendisi bir sayıdır. Öklid için
eğer Β Α’ya eşit olmayan bir büyüklük ise, o zaman kΑ ve kΒ
büyüklük olarak birbirine eşit değildir, ama kat olarak birbi-

rine eşittir, yani eşit katlardır (ἰσάκις πολλαπλασία).
Bazen Α ve Β büyüklükleri karşılaştırabilir: Α Β’dan büyük

veya küçük olabilir, ve (büyüklük olarak) ikisi birbirine eşit
olabilir. Sırasıyla

Α > Β, Α < Β, Α = Β
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ifadelerini yazarız. İki büyüklüğün her biri doğru veya her biri
yüzey ise, o zaman varsayıma göre büyüklüklerin her birinin
diğerinden büyük olan bir katı vardır. Bu varsayıma Arşimet

Aksiyomu denir, çünkü Arşimet onu yazıp kullandı [, s. ];
ama Arşimet’ten önce Öklid onu kullandı. Öklid, m.ö. 
civarında çalışıyordu; Arşimet, m.ö.  yılında Siraküza’nın
Romalılar tarafından alınmasında öldürüldü.

Eğer iki büyüklük Arşimet Aksiyomunu sağlarsa, o zaman
tanıma göre bu büyüklüklerin oranı vardır, veya büyüklükler,
bir orana sahiptir. O halde Α ve Β’nın oranı vardır ancak ve
ancak bir k sayma sayısı için

Α < Β < kΑ veya Β < Α < kΒ veya Α = Β.

Bu durumda bir orana sahip olma, bir denklik bağıntısıdır.
Α ve Β’nın oranı olsun. N’de herhangi k ve m için, eğer

mΑ < kΒ veya mΑ > kΒ veya mΑ = kΒ

ise, o zaman sırasıyla

Α : Β < k :m veya Α : Β > k :m veya Α : Β :: k :m

ifadesini yazalım. Şimdi Γ ve ∆’nın oranı da olsun. Ayrıca her
k ve her m için
• Α : Β < k :m ise Α : Γ < k :D olsun;
• Α : Β > k :m ise Α : Γ > k :D olsun;
• Α : Β :: k :m ise Α : Γ :: k :D olsun.

O zaman Öklid’in tanımına göre
• Α’nın Β’ya oranı, Γ’nın ∆’ya oranı ile aynıdır;
• Α, Β, Γ, ve ∆ orantılıdır.

Bu durumda
Α : Β :: Γ : ∆
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ifadesini yazarız, ama yukarıda gördüğümüz gibi Öklid ve Pap-
pus sadece sözler kullanırlar. Örneğin aşağıdaki Lemma III’de
ΚΘ’nın ΘΛ’ya oranı, Θ∆ · ΒΓ’nın ΘΒ · Γ∆’ya oranıyla aynıdır,
dolayısıyla

ΚΘ : ΘΛ :: Θ∆ · ΒΓ : ΘΒ · Γ∆
ifadesini yazıyoruz, ama Pappus

ὡς ἡ ΚΘ πρὸς ἡ ΘΛ,

οὕτως τὸ ὑπὸ Θ∆ ΒΓ πρὸς τὸ ὑπὸ ΘΒ Γ∆

(Nasıl ΚΘ ΘΛ’ya olursa
böyle Θ∆ ΒΓ altındaki ΘΒ Γ∆ altındakine olur)

yazıyor.
Pappus’un metninin bulunduğu el yazmasında, kısaltmalar

kullanılır, ama matematik kavramları değil, sadece sözcükler
için [, p. –].

Bu metin hakkında

Aşağıdaki çeviri için Hultsch’un [] edisyonunu kullandım.
Sadece bittikten sonra Jones’un [] edisyonunu bulup onunla
yaptığımı düzelttim.

Derleme’nin Kitap VII’sinde iki sıra vardır. Birinde  bö-
lüm vardır; diğerinde  önerme vardır. Hultsch her sıra için
Arap rakamlarını kullanır. Ayrıca Öklid’in Porizmalar ’ı hak-
kındaki lemmalara Romen rakamları koyar. Yukarıda bahset-
tiğimiz gibi Pappus, oran ve orantılar için özel işaretler kullan-
maz. Lemmaların kanıtlarını “Kanıt” ve arasına yazıyorum;
Pappus bunun gibi ifadeler kullanmaz.

Dizgi için LATEX yazılımını ve KOMA-Script scrbook docu-
mentclass’ını kullandım. Diyagramları, pstricks ve pst-eucl
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package’ları ile çizdim. Kullandığım Yunan fontu, Yunan Font
Derneği’nin gfsneohellenic fontudur.
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Oranlar ve orantılar

Öklid’in Öğeler ’inde orantılılık için iki kuram vardır:
• Kitap V’te, büyüklükler (sınırlı doğrular, yüzeyler, cisim-

ler) için;
• Kitap VII’de, sayılar için.

Gerçel sayıları tanımlamak için Dedekind, Öklid’in büyüklük-
lerin orantılılığı kuramını kullandı []. Bugün Öklid’in sayıların
orantılılığı kuramını anlamak zordur, ama anladığım kadarıyla
Öklid Algoritması üstüne kurulur. Bu algoritma ile büyüklük-
lerin orantılılığı bile anlaşılabilir. Bu konuda burada bazı ay-
rıntılar vermek istiyorum.

Sayılar

Öğeler ’in VII’nci kitabında, bir sayı, birimlerin oluşturduğu
bir çokluktur. Öklid’in diyagramlarında, sayılar ve onların bi-
rimleri, sınırlanmış doğrudurlar. Örneğin 4 sayısı, Şekil ’deki
gibi çizilebilir. Sayılar toplanabilir, ve tekrar tekrar toplanabi-
lir; örneğin

4+ 4+ 4 = 12.

Bu toplam, 3 kere 4’tür; kısaca

4+ 4+ 4 = 3 · 4.

Bundan dolayı
• 4, 12’yi ölçer;

• 3, 12’yi böler.
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Şekil : 4 sayısı

Genelde, k ve a sayıları verildiğinde, k · a çarpımı vardır. Bu-
rada

k · a = a+ · · ·+ a
︸ ︷︷ ︸

k

;

kısaca

k · a = a+ · · ·+ a.

O zaman
• k, k · a çarpımının bölenidir;
• a, k · a çarpımının ölçüsüdür.

Bu şekilde ölçmenin ve bölmenin tanımları farklıdır. Öklid gibi
bu işlemlerin sonuçlarının aynı olduğunu kanıtlayacağız.

Öklid Algoritması ile iki sayının en büyük ortak ölçüsünü
buluruz. Örneğin

666222 = 4 · 111444+ 666,
111444 = 2 · 666+ 222,

666 = 3 · 222,

yani

62 = 4 · 14+ 6,
14 = 2 · 6+ 2,
6 = 3 · 2,

dolayısıyla 62 ve 14’ün en büyük ortak ölçüsü 2’dir. Aynı
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şekilde

93 = 4 · 21+ 9,
21 = 2 · 9+ 3,
9 = 3 · 3,

dolayısıyla 93 ve 21’in en büyük ortak ölçüsü 3’tür.
İki hesabımızda, (4,2,3) bölenler listesi ortaktır. Sonuç ola-

rak 62’nin 14’e oranı, 93’ün 21’e oranı ile aynıdır ; kısaca

62 : 14 :: 93 : 21.

Genelde, a > b olduğunda, bir ve tek bir (m1, . . . , mn) sayılar
listesi vardır ki bazı (a1, . . . , an+1) sayılar listesi için

a = a1, b = a2 > · · · > an+1

ve {a, b} çifti için Öklid Algoritmasının aşağıdaki n adımı var-
dır:

a1 = m1 · a2 + a3,

. . . . . . . . . . . . . . . . . . . . . .

an−1 = mn−1 · an + an+1,

an = mn · an+1.

Bu durumda
• an+1 sayısı, {a1, a2} çiftinin en büyük ortak ölçüsüdür;
• (m1, . . . , mn) listesi, {a1, a2} çiftinin karşılıklı çıkarma

dizisi veya antif iretik dizidir.

Öklid Algoritması’nın yöntemi, karşılıklı çıkarmadır, ki Yu-
nanca’da ἀνθυφαίρεσις (Latince’de anthyphaeresis).

Eğer {c, d} çiftinin antifiretik dizisi, {a, b} çiftininki ile aynı
ise, o zaman (en eski tanıma göre) çiftlerin oranı aynıdır, yani
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çiftler orantılıdır. Bu durumda orantılılığın bir denklik bağın-
tısı olduğu hemen çıkar.

Eğer {a, b} ve {c, d} orantılı ise, ve ayrıca a > b ve ve c > d
ise, o zaman

a : b :: c : d, b : a :: d : c

ifadelerini yazarız. Bunların her biri, ve onun ifade ettiği ay-
nılık, bir orantıdır.

Öklid Algoritması’nın yukarıdaki n adımında an+1, her ai
sayısının bir ölçüsüdür. Şimdi an+1, e olarak yazalsın. O zaman
öyle (k1, . . . , kn) vardır ki

a1 = k1 · e, . . . , an = kn · e,

dolayısıyla algoritmanın adımları,

k1 · e = m1 · k2 · e + k3 · e,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

kn−1 · e = mn−1 · kn · e+ e,

kn · e = mn · e.

Burada e’nin yerine herhangi f sayısı konulabilir. Şimdi

k1 = k, k2 = ℓ

olsun. O zaman

a = k · e, b = ℓ · e,

ve herhangi c ve d için, onların en büyük ortak ölçüsü f oldu-
ğunda,

a : b :: c : d
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ancak ve ancak

c = k · f, d = ℓ · f.

Şonuç olarak
a : b :: a : c ise b = c .

Toplama birleşmeli ve değişmelidir:

a+ (b+ c) = (a+ b) + c, a+ b = b+ a.

Bundan dolayı

k · (a+ b) = (a+ b) + · · ·+ (a+ b)

= (a+ · · ·+ a) + (b+ · · ·+ b)

= k · a+ k · b.

Sonuç olarak, yukarıda gördüğümüzden

a : b :: c : d ise a : b :: (a + c) : (b+ d).

Bundan
a : b :: (a+ · · ·+ a) : (b+ · · ·+ b),

yani
a : b :: k · a : k · b.

Şimdi yine
a : b :: c : d

olsun, dolayısıyla

a = k · e, b = ℓ · e,
c = k · f, d = ℓ · f
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yazılabilir. Bu durumda

e : f :: k · e : k · f

olduğundan
e : f :: a : c.

Aynı şekilde
e : f :: b : d,

dolayısıyla
a : c :: b : d.

Kısaca
a : b :: c : d ise a : c :: b : d.

Şimdi

a · 1 = a, 1 : b :: a · 1 : a · b

olduğundan
1 : b :: a : a · b,

dolayısıyla
1 : a :: b : a · b.

Aynı zamanda
1 : a :: b : b · a,

dolayısıyla
b : a · b :: b : b · a.

Sonuç olarak
a · b = b · a.

Böylece bir çarpımın ölçüleri ve bölenleri aynıdır, dolayısıyla
çarpma değişmelidir.
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Şekil : 2 · 6 = 3 · 4

Tekrar
a : b :: c : d

olsun, dolayısıyla bazı e, f , k, ve ℓ için

a = k · e, b = ℓ · e, c = k · f, d = ℓ · f.

Çarpma değişmeli olduğundan

a · d = k · e · ℓ · f = ℓ · e · k · f = b · c;

kısaca
a · d = b · c.

Tersi de doğru olmalı. Böylece

a : b :: c : d ancak ve ancak a · d = b · c.

Bu denklik, orantılılığın tanımı olarak kullanılabilir, ama bu
durumda oranı aynı olma bağıntısının geçişli olduğu, tamamen
açık değildir.

Öklid için eşitlik, geometrik bir kavramdır. Örneğin

2 · 6 = 3 · 4

eşitliği, Şekil ’deki gibi çizilebilir. Bugün aynı eşitlik,

2
3

=
4
6
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biçiminde yazılabilir, ama burada 2/3 veya 4/6’nın kendisi
için açık bir geometrik anlamı yoktur. Genelde a ve b sayısı
için a/b,

{(x, y) : a : b :: x : y}
denklik sınıfı olarak tanımlanabilir. Bir

a

b
=

c

d

eşitliğine göre (a, b) ve (c, d)’nin birbirinden farklı olabildiği
halde denklik sınıfları aynıdır, yani

a : b :: c : d.

Büyüklükler

Bir sayı oluşturan birimler, sınırlanmış doğru, yüzey, veya ci-
sim olabilir. Bunların her biri, bir büyüklüktür. Cinsi aynı olan
büyüklükler karşılaştırılabilir. Örneğin bir Α büyüklüğü, bir Β
büyüklüğünden büyük veya küçük olabilir, ve ikisi birbirine
eşit olabilir. Bu durumda sırasıyla

Α > Β, Α < Β, Α = Β

ifadelerini yazarız.
Arşimet Aksiyomu sayesinde cinsi aynı olan büyüklük̆lerin

antifiretik dizisi vardır. Eğer Α > Β ve Γ > ∆ ise, ve ayrıca
{Α,Β} ve {Γ,∆}’nın antifiretik dizisi ortak ise, o zaman eski
bir tanıma göre

Α : Β :: Γ : ∆.

Bu tanım, sayıların orantılılığının tanımı ile aynıdır. Bununla
birlikte, bazı büyüklüklerin antifiretik dizisi vardır ama son-
suzdur, dolayısıyla büyüklüklerin ortak ölçüsü yoktur. Belki
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C A

BD

F

E

G

Şekil : Bir kare

bu sebeple büyüklükler için Öklid’in verdiği orantılılık tanımı,
karşılıklı çıkarmayı kullanmaz. Ayrıca karşılıklı çıkarmalı ta-
nım ile, iki oranın karşılaştırılması kolay değildir!

Bir örneğe bakalım. Bir karenin köşegeninin ve kenarının
antifiretik dizisi,

(1,2,2,2, . . . ).

Zira Şekil ’teki ABDC karesinde

CF = CA, FE ⊥ CB, EG = EF

olsun. O zaman FBE üçgeninde B ve E köşelerindeki açıların
her biri, dik açının yarısıdır, dolayısıyla

EF = FB.

Ayrıca CAE ve CFE üçgenlerinde, Pisagor Teoremi sayesinde

AE = EF.
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Sonuç olarak

CB = CF + FB = CA+ FB = AB + FB,

AB = AE + EG+GB = FB + FB +GB;

kısaca

CB = 1 · AB + FB,

AB = 2 · FB +GB.

Şimdi (FB,GB), (AB,FB) gibidir: her çiftte, birinci doğru
bir karenin kenarıdır, ve ikinci doğru, aynı karenin köşegeninin
ve kenarının farkısına eşittir. O zaman devam edebiliriz. A, F ,
ve G noktası, Şekil ’teki gibi sırasıyla A1, A2, ve A3 olsun.
O zaman CB’de öyle A4, A6, . . . noktaları vardır, ve A1B’de
öyle A5, A7, . . . noktaları vardır, ki

A1B > A2B > A3B > A4B > A5B > · · ·
ve her durumda

AnB = 2 · An+1B + An+2B.

Bu şekilde Öklid Algoritması ile

CB = 1 · A1B + A2B,

A1B = 2 · A2B + A3B,

A2B = 2 · A3B + A4B,

A3B = 2 · A4B + A5B,

. . . . . . . . . . . . . . . . . . . . . .

hesabı çıkar, dolayısıyla CB’nin ve A1B’nin antifiretik dizisi
(1,2,2, . . . ). Bu şekilde herhangi karenin köşegeninin ve ke-
narının antifiretik dizisi (1,2,2, . . . ) olmalı. Böylece örneğin

CB : A1B :: EB : A2B.
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Sayılar çarpılıp karşılaştırılabildiğinden, onların oranları da
karşılaştırılabilir. Aslında sayılarda, eğer

a · d < b · c

ise, o zaman tanıma göre

a : b < c : d

olsun. Eğer ayrıca
c : d < e : f

ise, o zaman
c · f < d · e,

dolayısıyla

a · d · f < b · c · f < b · d · e,
a · f < b · e,

ve sonuç olarak
a : b < e : f.

Böylece oranların karşılaştırması geçişlidir.
Benzer şekilde rasgele Α ve Β büyüklüğü için

ℓ · Α < k · Β

ise
Α : Β < k : ℓ

olsun. Eğer Α ve Β’nın oranı varsa, ve Γ ve ∆’nın farklı oranı
varsa, o zaman öyle k ve ℓ sayısı vardır ki

Α : Β < k : ℓ, Γ : ∆ > k : ℓ
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veya

Α : Β > k : ℓ, Γ : ∆ < k : ℓ.

Bunu göstereceğiz, ama önce örneğimize yine bakalım. Des-
cartes gibi uzunluklar için küçük harfler kullanacağız []. Şekil
’te CB’nin uzunluğu a olsun, kısaca

AB = a.

Ayrıca
A1B = b

olsun. O zaman
A2B = a− b,

dolayısıyla
EB = b− (a− b) = 2b− a.

Şimdi

a1 = a, b1 = b,

a2 = 2b− a, b2 = a− b

olsun, ve genelde

an+1 = 2bn − an, bn+1 = an − bn

olsun. O zaman
(
an+1
bn+1

)

=

(
−1 2
1 −1

)(
an
bn

)

.

Bu durumda, tümevarım ile,
(
an+1
bn+1

)

=

(
−1 2
1 −1

)n(
a
b

)

;
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ayrıca öyle kn ve ℓn sayma sayıları vardır ki
(
−1 2
1 −1

)n

= (−1)n
(

kn −2ℓn
−ℓn kn

)

ve
(
k1
ℓ1

)

=

(
1
1

)

,

(
kn+1
ℓn+1

)

=

(
kn + 2ℓn
kn + ℓn

)

.

Zira
(
−1 2
1 −1

)(
kn −2ℓn
−ℓn kn

)

=

(
−(kn + 2ℓn) 2(kn + ℓn)

kn + ℓn −(kn + 2ℓn)

)

.

Şimdi

an+1 = (−1)n(kna− 2ℓnb),
bn+1 = (−1)n(−ℓna + knb).

Son eşitlikten

b2n+1 = −ℓ2na + k2nb,

ℓ2na+ b2n+1 = k2nb,

ℓ2na < k2nb,

ve sonuç olarak
a : b < k2n : ℓ2n.

Benzer bir şekilde

k2n+1 : ℓ2n+1 < a : b.

Buradaki kn ve ℓn sayılarının bazı değerleri, yukarıdadır.

n 1 2 3 4 5 6 7 8
kn 1 3 7 17 41 99 239 577
ℓn 1 2 5 12 29 70 169 408

 Pappus



Ayrıca

1
1

<
7
5

<
41
29

<
239
169

<
577
408

<
99
70

<
17
12

<
3
2
.

Genelde

kn+1
ℓn+1

− kn
ℓn

=
kn + 2ℓn
kn + ℓn

− kn
ℓn

=
knℓn + 2ℓn2 − kn

2 − knℓn
(kn + ℓn)ℓn

=
2ℓn2 − kn

2

ℓnℓn+1
,

dolayısıyla

kn+2
ℓn+2

− kn+1
ℓn+1

=
2ℓn+12 − kn+1

2

ℓn+1ℓn+2

=
2(kn + ℓn)

2 − (kn + 2ℓn)2

ℓn+1ℓn+2

=
kn
2 − 2ℓn2

ℓn+1ℓn+2

= −
(
kn+1
ℓn+1

− kn
ℓn

)

· ℓnℓn+1
ℓn+1ℓn+2

.

Aynı zamanda

k2
ℓ2

− k1
ℓ1

=
3
2
− 1
1

=
1
2

=
1

ℓ1ℓ2

olduğundan, tümevarım ile her durumda

kn+1
ℓn+1

− kn
ℓn

=
(−1)n+1
ℓnℓn+1

.
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Bu farkların mutlak değerleri, azalan bir dizi oluşturur ve is-
tediğimiz kadar küçük olabilir çünkü

ℓ1 = 1, ℓn+1 = kn + ℓn > 2ℓn,

dolayısıyla

ℓn+1 > 2
n.

Bunlardan dolayı

k1
ℓ1

<
k3
ℓ3

< · · · < k2n−1
ℓ2n−1

<
k2n
ℓ2n

< · · · < k4
ℓ4

<
k2
ℓ2

ve kn/ℓn kesirli sayılarının gerçel limiti vardır. Bugün bu limite√
2 denir.

Genelde a0, a1, a2, . . . , sayma sayısı olsun. Tanıma göre

[a0] = a0,

[a0; a1] = a0 +
1

a1
,

[a0; a1, a2] = a0 +
1

a1 +
1

a2

,

[a0; a1, a2, a3] = a0 +
1

a1 +
1

a2 +
1

a3

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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olsun. O zaman

[a0] < [a0; a1],

[a0] < [a0; a1, a2] < [a0; a1],

[a0] < [a0; a1, a2] < [a0; a1, a2, a3] < [a0; a1],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ve hep beraber

[a0] < [a0; a1, a2] < [a0; a1, a2, a3, a4] < · · ·
· · · < [a0; a1, a2, a3, a4, a5] < [a0; a1, a2, a3] < [a0; a1].

Aslında b2k < c2k ise

[a0; a1, . . . , a2k−1, b2k, b2k+1, . . . ]

< [a0; a1, . . . , a2k−1, c2k]

< [a0; a1, . . . , a2k−1, c2k, c2k+1, . . . ],

ve benzer şekilde b2k+1 < c2k+1 ise

[a0; a1, . . . , a2k, b2k+1, b2k+2, . . . ]

> [a0; a1, . . . , a2k, c2k+1]

> [a0; a1, . . . , a2k, c2k+1, c2k+2, . . . ].

Öyleyse eğer
• Α ve Β’nın antifiretik dizisi (a0, . . . , an, b, . . . ),
• Γ ve ∆’nın antifiretik dizisi (a0, . . . , an, c, . . . ),
• b < c, ve

[a0; a1, . . . , an, c] =
p

q

ise, o zaman istediğimiz gibi

Α : Β < p : q < Γ : ∆

veya
Α : Β > p : q > Γ : ∆.

Oranlar ve orantılar 
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Şekil : Bir karenin yarısı

 Pappus



Thales, Pappus, ve Desargues

Giriş’te dediğimiz gibi, Pappus sık sık Şekil ’teki Thales Te-
oremi’ni kullanır. Lemma VIII bir istisnadır. Bu lemmaya göre,
eğer ABCDEF altıgeninde, Şekil ’da gibi

AB ‖ DE, BC ‖ EF

ise, o zaman
CD ‖ FA.

Bu bölümde bu lemmaya, Pappus Teoremi diyelim. Bu teorem
sayesinde, Arşimet Aksiyomu’nu kullanmadan, orantılılığı ta-
nımlayabiliriz. İki yöntem vardır.

. Tanım olarak Thales Teoremi’ni kullanabiliriz. Bu du-
rumda :: “oranı aynı olma” bağıntısının bir denklik ba-
ğıntısı olduğu açık değildir. Bağıntının simetrik olduğu
açıktır, ama geçişli olduğunu göstermek için çalışmak zo-
rundayız.

. Çarpma ile “oranı aynı olma” bağıntısını tanımlayabiliriz.
Bu durumda yine Thales Teoremi’ni kanıtlamak zorun-
dayız.

Çarpma ile başlayalım. Sayılarda, çarpmanın değişmeli olu-
ğunu gösterdikten sonra,

a : b :: c : d ancak ve ancak a · d = b · c

denkliğini kanıtladık. Bunu, :: bağıntısının tanımı olarak alır-
sak, bağıntının geçişli olduğunu aşağıdaki gibi gösterebiliriz.


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BC ‖ EF

ancak ve ancak

AB : AE :: AC : AF

Şekil : Thales Teoremi

Eğer

a : b :: c : d, c : d :: e : f

ise, o zaman

a · d = b · c, c · f = d · e,

dolayısıyla

a · d · f = b · c · f, b · c · f = b · d · e,

ve (eşitlik geçişli olduğundan)

a · d · f = b · d · e,

ve sonuç olarak
a · f = b · e,

yani
a : b :: e : f.

Sayıların yerine uzunluklar kullanarak aynı şey yapabiliriz,
ama burada

 Pappus
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Şekil : Pappus Teoremi

• Giriş’te dediğimiz gibi iki uzunluğun çarpımı bir alandır;
• üç uzunluğun çarpımı bir hacim olur.

Alan ve hacim kullanmak istemezsek,  yılında René Des-
cartes’in yaptığı gibi [], ve  yılında David Hilbert’in daha
ayrıntılı bir şekilde yaptığı gibi [], birim olarak bir uzunluk
seçerek, Şekil ’deki gibi iki uzunluğun çarpımını yeni bir
uzunluk olarak tanımlayabiliriz. Descartes çarpmasının değiş-
meli ve birleşmeli olduğu, Pappus Teoremi’nden çıkar. Şekil
’da, eğer

OA = OF

ise, o zaman ∠OAF = ∠OFA, dolayısıyla

∠OCD = ∠OAF = ∠OFA = ∠ODC,

ve sonuç olarak
OC = OD.

Thales, Pappus, ve Desargues 
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OC = 1,

OA = a,

OB = b







ise OD = a · b

Şekil : Descartes çarpması

Şimdi ayrıca O’daki açı dik olsun. Eğer

OA = OF = 1, OE = a, OB = b

ise, o zaman

OC = a · b, OD = b · a,

dolayısıyla
a · b = b · a.

Bu şekilde Descartes çarpması değişmelidir. Eğer Şekil ’da

OA = OF = c, OE = a · c, OB = b · c

ise, o zaman

OC = a · (b · c), OD = b · (a · c),

dolayısıyla

a · (c · b) = a · (b · c) = b · (a · c) = (a · c) · b.

Böylece Descartes çarpması birleşmelidir.

 Pappus
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Şekil : Thales Teoremi için birinci adım

Orantılılık için yeni tanımımız ile Thales Theoremi’ni kanıt-
layalım. Şekil ’de,

BC ‖ EF ancak ve ancak AG = AH ;

burada AG’nin anlamı, AEGC paralelkenarıdır, ve aynı şe-
kilde AH , ABHF paralelkenardır. Ayrıntılar, [] makalem-
dedir. Şekil ’u kullanarak

AG = AH ancak ve ancak AB · AF = AE · AC.

denkliğini gösterebiliriz. Yeni tanımımız ile

AE · AC = AB · AF ancak ve ancak AB : AE :: AC : AF.

Son üç denklikten Thales Teoremi çıkar.
Şimdi, orantılılığın tanımı olarak Thales Teoremi’ni kabul

ederek “oranı aynı olma” bağıntısının geçişli olduğunu göste-
receğiz. Bu geçişlilik, Desargues Teoremi ile denktir []. Bu
teoreme göre, Şekil ’de, eğer

Thales, Pappus, ve Desargues 
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Şekil : Thales Teoremi için ikinci adım

AB ‖ DE, AC ‖ DF,

ise, o zaman
BC ‖ EF.

Üç kere Pappus Teoremi’ni kullanarak  yılında Gerhard
Hessenberg, Desargues Teoremi’ni kanıtladı []. Şekil ’de,

AB ‖ DE, AC ‖ DF

varsayılır. Eğer ayrıca

OB ∦ AC

ise, D noktasından geçen ve LM doğrusuna paralel olan OB
çizeriz ve diyagramı tamamlarız. Pappus Teoremi ile
• ONDLAE altıgeninde ON ‖ AL,
• ONMLCB altıgeninde BC ‖ MN ,
• ONMDFE altıgeninde EF ‖ MN .

 Pappus
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Şekil : Desargues Teoremi

Paralellik geçişli olduğundan

BC ‖ EF.

Kalan durumda Şekil ’deki gibi ABOC bir paralelkenardır.
Bu durumda OB’de öyle bir E ′ vardır ki FE ′ ‖ CB. İlk du-
rumdan DE ′ ‖ AB, dolayısıyla E ′ noktası zaten E’dir.

Thales, Pappus, ve Desargues 
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Şekil : Hessenberg’in kanıtı

C O

A B

D
E ′

F

Şekil : Hessenberg’in kanıtının özel durumu

 Pappus



Öklid’in Porizmalar ’ı için
Derleme’nin

VII. Kitabının
 Lemmasından
İlk  Lemması





Lemma I (Önerme )

. Diyagram ΑΒΓ∆ΕΖΗ olsun, ve

ΑΖ : ΖΗ :: Α∆ : ∆Γ

olsun, ve ΘΚ birleştirilmiş olsun. O zaman

ΘΚ ‖ ΑΓ.

Kanıt. Ζ’dan Β∆’ya paralel olan ΖΛ ilerletilmiş olsun. Dolayı-
sıyla

ΑΖ : ΖΗ :: Α∆ : ∆Γ

olduğundan tersine ve toplamayla ve izlemeyle (ve paraleller-
den)

∆Α : ΑΖ
︸ ︷︷ ︸

ΒΑ : ΑΛ

:: ΓΑ : ΑΗ.

Böylece
ΛΗ ‖ ΒΓ.

Böylece (paralellerden)

ΕΒ : ΒΛ ::

{

ΕΚ : ΚΖ

ΕΘ : ΘΗ.

Böylece
ΕΚ : ΚΖ :: ΕΘ : ΘΗ.

Böylece
ΘΚ ‖ ΑΓ.


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. Bileşik oranları kullanan kanıt.

ΑΖ : ΖΗ :: Α∆ : ∆Γ

olduğundan, tersine

ΗΖ : ΖΑ :: Γ∆ : ∆Α.

Toplamayla ve izlemeyle ve çevirmeyle

Α∆ : ∆Ζ :: ΑΓ : ΓΗ.

Ama
Α∆ : ∆Ζ :: (ΑΒ : ΒΕ)(ΕΘ : ΘΗ),

böylece

(ΑΒ : ΒΕ)(ΕΚ : ΚΖ) :: (ΑΒ : ΒΕ)(ΕΘ : ΘΗ).

Lemma I 
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Ortak ΑΒ : ΒΕ oranı kovulmuş olsun. Böylece kalan

ΕΚ : ΚΖ :: ΕΘ : ΘΗ.

Böylece
ΘΚ ‖ ΑΓ.

 Pappus



Α

Β

Γ

∆

Ε

Ζ
Η

Θ

Κ

Λ

Α

Β

Γ
∆

Ε

Ζ Η

Θ
ΚΛ

Lemma I 



Lemma II (Önerme )

. Diyagram ΑΒΓ∆ΕΖΗΘ [olsun], ve ΑΖ ∆Β’ya paralel olsun,
ve

ΑΕ : ΕΖ :: ΓΗ : ΗΖ

[olsun]. O zaman

Θ, Κ, ve Ζ’dan [geçen çizgi] doğrudur.

Kanıt. Η’dan ∆Ε boyunca ΗΛ ilerletilmiş olsun, ve birleştiril-
miş olan ΘΚ Λ’ya uzatılmış olsun.

ΑΕ : ΕΖ :: ΓΗ : ΗΖ

olduğundan, izlemeyle

ΑΕ : ΓΗ :: ΕΖ : ΖΗ.

Ayrıca
ΑΕ : ΓΗ :: ΕΘ : ΗΛ

(çünkü iki doğru iki doğruya paralel, ve izlemeyle). Böylece

ΕΖ : ΖΗ :: ΕΘ : ΗΛ.

Ayrıca ΕΘ ΗΛ’ya paraleldir. Böylece

Θ, Λ, Ζ’dan [geçen çizgi] doğrudur,

yani Θ, Κ, Ζ’dan.


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Lemma III (Önerme )

. Üç doğru ΑΒ, ΓΑ, ve ∆Α üzerine iki doğru ΘΕ ve Θ∆
sürdürülmüş olsun. O zaman

ΘΕ · ΗΖ : ΘΗ · ΖΕ :: ΘΒ · ∆Γ : Θ∆ · ΒΓ.

Kanıt.

• Θ’dan geçen ve ΖΓΑ’ya paralel olan ΚΛ ilerletilmiş olsun,
ve ∆Α ve ΑΒ bununla kesişmiş olsun Κ ve Λ noktalarında;

• Λ’dan da geçen ve ∆Α’ya paralel olan ΛΜ de [ilerletilmiş
olsun], ve ΕΘ ile kesişmiş olsun Μ’de.

Dolayısıyla,

ΕΖ : ΖΑ :: ΕΘ : ΘΛ,

ΑΖ : ΖΗ :: ΘΛ : ΘΜ

(çünkü ikisi, ΘΚ : ΘΗ ile aynı, parallerden), [ve bunlar] oldu-
ğundan, böylece eşitlikten

ΕΖ : ΖΗ :: ΕΘ : ΘΜ.

Böylece
ΘΕ · ΗΖ = ΕΖ · ΘΜ.


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ΕΖ · ΘΗ da başka rasgele bir [çarpımdır]. Böylece

ΕΘ · ΗΖ : ΕΖ · ΗΘ :: ΕΖ ·ΘΜ : ΕΖ · ΗΘ
:: ΘΜ : ΘΗ

:: ΛΘ : ΘΚ.

Aynı [şekil]de

ΚΘ : ΘΛ :: Θ∆ · ΒΓ : ΘΒ · Γ∆.
Böylece tersine

ΛΘ : ΘΚ :: ΘΒ · Γ∆ : Θ∆ · ΒΓ.
Ve

ΛΘ · ΘΚ :: ΕΘ · ΗΖ : ΕΖ · ΗΘ
gösterilmiş oldu. Ve böylece

ΕΘ · ΗΖ : ΕΖ · ΗΘ :: ΘΒ · Γ∆ : Θ∆ · ΒΓ.

Lemma III 



. Bileşik oranları kullanan kanıt.

ΘΕ · ΗΖ : ΘΗ · ΖΕ :: (ΘΕ : ΕΖ)(ΖΗ : ΗΘ),
ΘΕ : ΕΖ :: ΘΛ : ΖΑ,

ΖΗ : ΗΘ :: ΖΑ : ΘΚ

olduğundan, böylece

ΘΕ · ΗΖ : ΘΗ · ΕΖ :: (ΘΛ : ΖΑ)(ΖΑ : ΘΚ).

Ayrıca
(ΘΛ : ΖΑ)(ΖΑ : ΘΚ) :: ΘΛ : ΘΚ.

Böylece
ΘΕ · ΗΖ : ΘΗ · ΖΕ :: ΘΛ : ΘΚ.

Aynı [sebep]le

Θ∆ · ΒΓ : ΘΒ · Γ∆ :: ΘΚ : ΘΛ.

Ve tersine
ΘΒ · Γ∆ : Θ∆ · ΒΓ :: ΘΛ : ΘΚ.

Ama
ΘΕ · ΖΗ : ΘΗ · ΖΕ :: ΘΛ : ΘΚ

oldu. Ve böylece

ΘΕ · ΖΗ : ΘΗ · ΖΕ :: ΘΒ · Γ∆ : Θ∆ · ΒΓ.

 Pappus
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Lemma III 



Lemma IV (Önerme )

. Diyagram ΑΒΓ∆ΕΖΗΘΚΛ [olsun], ve

ΑΖ · ΒΓ : ΑΒ · ΓΖ :: ΑΖ · ∆Ε : Α∆ · ΕΖ

olsun. O zaman

Θ, Η, ve Ζ noktalarından [geçen çizgi] doğrudur.

Kanıt. ΑΖ ·ΒΓ :ΑΒ ·ΓΖ :: ΑΖ ·∆Ε :Α∆ ·ΕΖ olduğundan izlemeyle

ΑΖ · ΒΓ : ΑΖ · ∆Ε
︸ ︷︷ ︸

ΒΓ : ∆Ε

:: ΑΒ · ΓΖ : Α∆ · ΕΖ.

Ama (eğer Κ’dan ΑΖ’ya paralel olan ΚΜ ilerletilmiş ise)

ΒΓ : ∆Ε :: (ΒΓ : ΚΝ)(ΚΝ : ΚΜ)(ΚΜ : ∆Ε),

ΑΒ · ΓΖ : Α∆ · ΕΖ :: (ΒΑ : Α∆)(ΓΖ : ΖΕ).

ΝΚ : ΚΜ ile aynı olan ortak ΒΑ : Α∆ kovulmuş olsun, Böylece

kalan ΓΖ : ΖΕ :: (ΒΓ : ΚΝ
︸ ︷︷ ︸

ΘΓ : ΚΘ

)(ΚΜ : ∆Ε
︸ ︷︷ ︸

ΚΗ : ΗΕ

).

Böylece

Θ, Η, ve Ζ’dan [geçen çizgi] doğrudur.

Zira eğer Ε’dan ΘΓ’ya paralel olan ΕΞ’yi ilerlersem, ve birleş-
tirilmiş olan ΘΗ Ξ’ye uzatılmış olursa,


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• ΚΗ : ΗΕ :: ΚΘ : ΕΞ,

• (ΓΘ : ΘΚ)(ΘΚ : ΕΞ) bileşimi ΘΓ : ΕΞ oranıyla değiştirilir,
ve

ΓΖ : ΖΕ :: ΓΘ : ΕΞ.

ΓΘ ΕΞ’ye paralel olunca, böylece

Θ, Ξ, ve Ζ’dan [geçen çizgi] doğrudur

(zira bu apaçıktır), öyleyse ayrıca

Θ, Η, ve Ζ’dan [geçen çizgi] doğrudur.

Lemma IV 



Lemma V (Önerme )

. Eğer diyagram ΑΒΓ∆ΕΖΗΘ ise [ve özel olarak Α, Η, ve
Θ’dan geçen çizgi doğru ise],

Α∆ : ∆Γ :: ΑΒ : ΒΓ

meydana gelir. Dolayısıyla Α∆ : ∆Γ :: ΑΒ : ΒΓ olsun. O zaman

Α, Η, ve Θ’dan [geçen çizgi] doğrudur.

Kanıt. Η’dan Α∆’ya paralel olan ΚΛ ilerletilmiş olsun. Dolayı-
sıyla

Α∆ : ∆Γ :: ΑΒ : ΒΓ

olduğundan, ama

Α∆ : ∆Γ :: ΚΛ : ΛΗ,

ΑΒ : ΒΓ :: ΚΗ : ΗΜ

olduğundan, böylece ayrıca

ΚΛ : ΛΗ :: ΚΗ : ΗΜ,

ve

kalan ΗΛ : kalan ΛΜ :: ΚΛ : ΛΗ

:: Α∆ : ∆Γ.


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İzlemeyle

Α∆ : ΗΛ :: Γ∆ : ΛΜ

:: ∆Θ : ΘΛ,

ve ΗΛ Α∆’ya paraleldir. Böylece

Α, Η, ve Θ noktalarından [geçen çizgi] doğrudur;

zira bu apaçıktır.

Lemma V 



Lemma VI (Önerme )

. Yine eğer diyagram [ΑΒΓ∆ΕΖΗ] ise, ve ∆Ζ ΒΓ’ya paralel
ise,

ΑΒ = ΒΓ

meydana gelir. Dolayısıyla eşit olsun; o zaman

[∆Ζ ΒΓ’ya] paraleldir.

Kanıt. Olur da. Zira eğer ΕΒ’da ΗΒ’ya eşit olan ΒΘ’yı koyar-
sam, ve ΑΘ ve ΘΓ’yı birleştirirsem,

paralelkenar ΑΘΓΗ meydana gelir,

ve bundan
Α∆ : ∆Ε :: ΓΖ : ΖΕ

(zira söylenmiş [iki oranın] her biri ΘΗ : ΗΕ oranıyla aynıdır).
Öyleyse

∆Ζ ‖ ΑΓ.


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Lemma VII (Önerme )

. Diyagram olsun, ve ∆Β ve ΒΓ’nın orta orantılısı ΒΑ olsun
(τῶν ∆Β ΒΓ μέση ἀνάλογον ἔστω ἡ ΒΑ). O zaman

ΖΗ ‖ ΑΓ.

Kanıt. ΕΒ uzatılmış olsun, ve Α’dan ∆Ζ doğrusuna paralel olan
ΑΚ ilerletilmiş olsun, ve ΓΚ birleştirilmiş olsun. Dolayısıyla

ΓΒ : ΒΑ :: ΑΒ : Β∆,

ΑΒ : Β∆ :: ΚΒ : ΒΘ

olduğundan, ayrıca

ΓΒ : ΒΑ :: ΚΒ : ΒΘ.

Böylece
ΑΘ ‖ ΚΓ.

Dolayısıyla yine
ΑΖ : ΖΕ :: ΓΗ : ΗΕ

(zira her oran ΚΘ : ΘΕ oranıyla aynıdır). Öyleyse

ΖΗ ‖ ΑΓ.

Yani ∆Β : ΒΑ :: ΒΑ : ΒΓ olsun. Öğeler Önerme VI.’üne bakın. Yunan
ἡ μέση ἀνάλογον teriminin İngilizcesi mean proportional ’dır, örneğin
lisede kullandığım geometri ders kitabında [, s. ]. Türkçe’de De-
mirtaş “orta orantılı” kullanır [, s. ], ama Atatürk “ortakoran”
kullandı [, s. ].


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Lemma VIII (Önerme )

. Diyagram (ὁ βωμίσκος “küçük sunak”) ΑΒΓ∆ΕΖΗ olsun, ve

∆Ε ΒΓ’ya, ve ΕΗ ΒΖ’ya, paralel olsun.

O zaman
∆Ζ ‖ ΓΗ da.

Kanıt. ΒΕ, ∆Γ, ve ΖΗ birleştirmiş olsun. Böylece

∆ΒΕ üçgeni ∆ΓΕ üçgenine eşittir.

Ortak ∆ΑΕ üçgeni eklenmiş olsun. Böylece

ΑΒΕ üçgeninin tümü, Γ∆Α üçgeninin tümüne eşittir.

Yine ΒΖ ΕΗ’ya paralel olduğundan

ΒΖΕ üçgeni ΒΖΗ üçgenine eşittir.

Ortak ΑΒΖ üçgeni ayrılmış olsun. Böylece

kalan ΑΒΕ üçgeni, kalan ΑΗΖ üçgenine eşittir.

Ama
ΑΒΕ üçgeni ΑΓ∆ üçgenine eşittir.

Böylece
ΑΓ∆ üçgeni de, ΑΗΖ üçgenine eşittir.
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Ortak ΑΓΗ üçgeni eklenmiş olsun. Böylece

Γ∆Η üçgeninin tümü, ΓΖΗ üçgeninin tümüne eşittir.

Ve aynı ΓΗ tabanındadırlar. Böylece

ΓΗ ‖ ∆Ζ.

Lemma VIII 



Lemma IX (Önerme )

. Üçgen ΑΒΓ olsun, ve orada Α∆ ve ΑΕ sürdürülmüş olsun,
ve ΒΓ’ya paralel olan ΖΗ ilerletilmiş olsun, ve ΖΘΗ eğilmiş
olsun, ve

ΒΘ : ΘΓ :: ∆Θ : ΘΕ

olsun. O zaman
ΚΛ ‖ ΒΓ.

Kanıt. Zira
ΒΘ : ΘΓ :: ∆Θ : ΘΕ

olduğundan, böylece

kalan BD : kalan GE :: ∆Θ : ΘΕ.

Ve
Β∆ : ΕΓ :: ΖΜ : ΝΗ;

böylece ayrıca
ΖΜ : ΝΗ :: ∆Θ : ΘΕ.

İzlemeyle
ΖΜ : ∆Θ :: ΝΗ : ΘΕ.

Ama paralellerden

ΖΜ : ∆Θ :: ΖΚ : ΚΘ,

ΗΝ : ΘΕ :: ΗΛ : ΛΘ,
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ve böylece
ΖΚ : ΚΘ :: ΗΛ : ΛΘ.

Böylece
ΚΛ ‖ ΗΖ.

öyleyse ΓΒ’ya.

Lemma IX 



Lemma X (Önerme )

. İki doğru ΒΑΕ ve ∆ΑΗ üzerine, Θ noktasından geçen iki
doğru ∆Θ ve ΘΕ sürdürülmüş olsun, ve

∆Θ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΕ · ΖΗ

olsun. O zaman

Γ, Α, ve Ζ’dan geçen [çizgi] doğrudur.

Kanıt.

• Θ’dan ve ΓΑ’ya paralel olan ΚΛ ilerletilmiş olsun,

• ΑΒ ve Α∆ ile Κ ve Λ noktalarında kesişmiş olsun,

• Λ’dan Α∆’ya paralel olan ΛΜ ilerletilmiş olsun,

• ΕΘ Μ’ye uzatılmış olsun,

• Κ’dan ΑΒ’ya paralel olan ΚΝ ilerletilmiş olsun,

• ∆Θ Ν’ye uzatılmış olsun.

Dolayısıyla paralellerden

∆Θ : ΘΝ :: ∆Γ : ΓΒ
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olmuş olduğundan, böylece

∆Θ · ΓΒ = ∆Γ · ΘΝ.
∆Γ · ΒΘ da başka rasgele bir [çarpımdır]. Böylece

∆Θ · ΒΓ : ∆Γ · ΒΘ :: Γ∆ · ΘΝ : ∆Γ · ΒΘ
:: ΘΝ : ΘΒ.

Ama
Θ∆ · ΒΓ : ∆Γ · ΒΘ :: ΘΗ · ΖΕ : ΘΕ · ΖΗ

varsayılır, ve

ΘΝ : ΘΒ :: ΚΘ : ΘΛ

:: ΗΘ : ΘΜ (paralellerden)

:: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

Lemma X 



Ve böylece

ΘΗ · ΖΕ : ΘΕ · ΖΗ :: ΘΗ · ΖΕ : ΘΜ · ΖΕ.

Böylece
ΘΕ · ΖΗ = ΘΜ · ΖΕ.

Ve böylece
ΘΜ : ΘΕ :: ΗΖ : ΖΕ.

Toplamayla ve izlemeyle

ΜΕ : ΕΗ :: ΘΕ : ΕΖ.

Ama
ΜΕ : ΕΗ :: ΛΕ : ΕΑ,

ve böylece
ΛΕ : ΕΑ :: ΘΕ : ΕΖ.

Böylece
ΑΖ ‖ ΚΛ.

Ama
ΓΑ da [ΚΛ’ya paraleldir].

Böylece
ΓΑΖ doğrudur.

Bunun durumları, tersi olan önceden yazılmışlarınki [yani
Lemma III’ün durumları] gibidir.

 Pappus
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Lemma XI (Önerme )

. Üçgen ΑΒΓ [olsun], ve Α∆ ΒΓ’ya paralel [olsun], ve sürdü-
rülmüş olan ∆Ε, ΒΓ ile Ε noktada kesişmiş olsun. O zaman

∆Ε · ΖΗ : ΕΖ · Η∆ :: ΓΒ : ΒΕ.

Kanıt. Γ’dan ΑΕ’a paralel olan ΓΘ ilerletilmiş olsun, ve ΑΒ
Θ’ya uzatılmış olsun. Dolayısıyla

ΓΑ : ΑΗ :: ΓΘ : ΖΗ,

ΓΑ : ΑΗ :: Ε∆ : ∆Η

olduğundan, dahi

Ε∆ : ∆Η :: ΘΓ : ΖΗ.

Böylece
ΓΘ · ∆Η = Ε∆ · ΖΗ.

ΕΖ · Η∆ da başka rasgele bir [çarpımdır]. Böylece

∆Ε · ΖΗ : ∆Η · ΕΖ :: ΓΘ · ∆Η : ∆Η · ΕΖ
:: ΓΘ : ΕΖ

:: ΓΒ : ΒΕ.

Dolayısıyla
∆Ε · ΖΗ : ΕΖ · Η∆ :: ΓΒ : ΒΕ.

Eğer Α∆ paraleli diğer tarafa da ilerletilmiş ise, ve ∆Ε ∆’dan
Γ’nın ötesine sürdürülmüş ise, aynı şey [doğrudur].
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Lemma XII (Önerme )

. Bunlar şimdi kanıtlanmış olunca, eğer ΑΒ ve Γ∆ para-
lel ise, ve bunların üzerine bazı doğrular Α∆, ΑΖ, ΒΓ, ve ΒΖ
düşerse, ve Ε∆ ve ΕΓ birleştirilirse, o zaman

Η, Μ, ve Κ’dan geçen [çizgi’nin] doğru olduğu

gösterilecek.

Kanıt. Zira ∆ΑΖ üçgen olduğundan, ve ΑΕ ∆Ζ’ya paralel ol-
duğundan, ve ∆Ζ’ya Γ’da düşen ΕΓ sürdürülmüş olduğundan,
önceden yazılmışlara göre

∆Ζ : ΖΓ :: ΓΕ · ΗΘ : ΓΗ · ΘΕ

meydana gelir. Yine ΓΒΖ üçgen olduğundan, ve Γ∆’ya para-
lel olan ΒΕ ilerletilmiş olduğundan, ve ΓΖ∆’ya ∆’da düşen ∆Ε
sürdürülmüş olduğundan

ΓΖ : Ζ∆ :: ∆Ε · ΛΚ : ∆Κ · ΛΕ

meydana gelir. Böylece tersine

∆Ζ : ΖΓ :: ∆Κ · ΛΕ : ∆Ε · ΛΚ

meydana gelir.

∆Ζ : ΖΓ :: ΓΕ · ΗΘ : ΓΗ · ΘΕ

da oldu. Ve böylece

ΓΕ · ΗΘ : ΓΗ ·ΘΕ :: ∆Κ · ΛΕ : ∆Ε · ΚΛ.
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Dolayısıyla iki doğru ΕΓ ve Ε∆, iki doğru ΓΜΛ ve ∆ΜΘ’ya sür-
dürülmüş olduğundan, ve

ΓΕ · ΗΘ : ΓΗ · ΘΕ :: ∆Κ · ΕΛ : ∆Ε · ΛΚ

olduğundan, böylece

Η, Μ, ve Κ’dan [geçen çizgi] doğrudur;

zira bu gösterilmiş oldu.

Lemma XII 



Lemma XIII (Önerme )

. Ama o halde ΑΒ ve Γ∆ paralel olmasın, ama Ν’de kesişmiş
olsun. O zaman yine

Η, Μ, ve Κ’dan geçen [çizgi] doğrudur.

Kanıt. Üç doğru ΑΝ, ΑΖ, ve Α∆ üzerine aynı Γ noktasından
iki doğru ΓΕ ve Γ∆ sürdürülmüş olduğundan,

ΓΕ · ΗΘ : ΓΗ : ΘΕ :: ΓΝ · Ζ∆ : Ν∆ · ΓΖ

meydana gelir. Yine aynı ∆ noktasından, üç doğru ΒΝ, ΒΓ, ve
ΒΖ üzerine iki doğru ∆Ε ve ∆Ν sürdürülmüş olduğundan

ΝΓ · Ζ∆ : Ν∆ : ΖΓ :: ∆Κ · ΕΛ : ∆Ε · ΚΛ.

Ama
ΝΓ · Ζ∆ : Ν∆ · ΓΖ :: ΓΕ · ΗΘ : ΓΗ · ΘΕ

gösterilmiş oldu. Ve dolayısıyla

ΓΕ · ΘΗ : ΓΗ ·ΘΕ :: ∆Κ · ΕΛ : ∆Ε · ΚΛ.

O halde önceden yazılmışlara göre

Η, Μ, ve Κ’dan geçen [çizgi] doğrudur.
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Lemma XIV (Önerme )

. ΑΒ Γ∆’ya paralel olsun, ve ΑΕ ve ΓΒ sürdürülmüş olsun,
ve [öyle] bir nokta ΒΗ’da Ζ [olsun] ki

∆Ε : ΕΓ :: ΓΒ · ΗΖ : ΖΒ · ΓΗ

[olsun]. O zaman

Α, Ζ, ve ∆’dan [geçen çizgi] doğrudur.

Kanıt.

• ∆’dan ΒΓ’ya paralel olan ∆Θ ilerletilmiş olsun, ve ΑΕ Θ’ya
uzatılmış olsun,

• Θ’dan Γ∆’ya paralel olan ΘΚ [ilerletilmiş olsun], ve ΒΓ
Κ’ya uzatılmış olsun.

Dolayısıyla

∆Ε : ΕΓ :: ΓΒ · ΖΗ : ΖΒ · ΓΗ,
∆Ε : ΕΓ :: ∆Θ : ΓΗ

:: ∆Θ · ΒΖ : ΓΗ · ΒΖ

olduğundan, böylece

ΒΓ · ΖΗ :: ∆Θ · ΒΖ.
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Böylece

ΓΒ : ΒΖ :: ∆Θ : ΗΖ

:: ΓΚ : ΗΖ

orantı vardır. Böylece ayrıca

ΚΒ tümü : ΒΗ tümü :: ΚΓ : ΖΗ

:: ∆Θ : ΖΗ.

Ama paralellerden

ΚΒ : ΒΗ ::

{

ΘΑ : ΑΗ,

∆Θ : ΖΗ.

Ve ∆Θ ve ΖΗ paraleldir. Böylece

Α, Ζ, ve ∆ noktalarından [geçen çizgi] doğrudur.

Lemma XIV 



Lemma XV (Önerme )

. Bu önceden bakılmış olunca, ΑΒ Γ∆’ya paralel olsun, ve
bunların üzerine doğrular ΑΖ, ΖΒ, ΓΕ, ve Ε∆ düşmüş olsun, ve
ΒΓ ve ΗΚ birleştirilmiş olsun. O zaman

Α, Μ, ve ∆’dan [geçen çizgi] doğrudur.

Kanıt. ∆Μ birleştirilmiş olsun ve Θ’ya uzatılmış olsun. Dola-
yısıyla ΒΓΖ üçgeninin Β tepe noktasından Γ∆’ya paralel olan
ΒΕ ilerletilmiş olduğundan ve ∆Ε sürdürülmüş olduğundan,

ΓΖ : Ζ∆ :: ∆Ε · ΚΛ : ΕΛ · Κ∆

meydana gelir. Ayrıca

∆Ε · ΚΛ : ∆Κ · ΛΕ :: ΓΗ · ΘΕ : ΓΕ · ΗΘ

(zira üç doğru ΓΛ, ∆Θ, ve ΗΚ üzerine aynı Ε noktasından iki
doğru ΕΓ ve Ε∆ sürdürülmüştür). Böylece

∆Ζ : ΖΓ :: ΓΕ · ΗΘ : ΓΗ · ΘΕ.

Ayrıca
Θ, Μ, ve ∆’dan [geçen çizgi] doğrudur.

Böylece önceden yazılmıştan ayrıca

Α, Μ, ve ∆’dan [geçen çizgi] doğrudur.
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Lemma XVI (Önerme )

. İki doğru ΑΒ ve ΑΓ üzerine aynı ∆ noktasından ∆Β ve
∆Ε sürdürülmüş olsun, ve bunlarda Η ve Θ noktaları alınmış
olsun, ve

ΕΗ · Ζ∆ : ∆Ε · ΗΖ :: ΒΘ · Γ∆ : Β∆ · ΓΘ

olsun. O zaman

Α, Η, ve Θ’dan [geçen çizgi] doğrudur.

Kanıt. Η’dan Β∆’ya paralel olan ΚΛ ilerletilmiş olsun. Dolayı-
sıyla

ΕΗ · Ζ∆ : ∆Ε · ΖΗ :: ΒΘ · Γ∆ : Β∆ · ΓΘ
olduğundan, ama

ΕΗ · Ζ∆ : ∆Ε · ΗΖ :: (ΗΕ : Ε∆)(∆Ζ : ΖΗ)
:: (ΚΗ : Β∆)(Γ∆ : ΗΛ)

olduğundan, ve ayrıca

ΒΘ · Γ∆ : Β∆ · ΓΘ :: (ΘΒ : Β∆)(∆Γ : ΓΘ)

olduğundan, böylece

(ΚΗ : Β∆)(Γ∆ : ΗΛ) :: (ΒΘ : Β∆)(∆Γ : ΓΘ).
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Ve
ΚΗ : Β∆ :: (ΚΗ : ΒΘ)(ΒΘ : Β∆);

böylece

(ΚΗ : ΒΘ)(ΒΘ : Β∆)(Γ∆ : ΗΛ) :: (ΒΘ : Β∆)(∆Γ : ΓΘ).

Ortak ΒΘ : Β∆ oranı kovulmuş olsun. Böylece kalan

(ΚΗ : ΒΘ)(Γ∆ : ΗΛ) :: ∆Γ : ΓΘ

:: (∆Γ : ΗΛ)(ΗΛ : ΘΓ).

Ve yine ortak ∆Γ : ΗΛ oranı kovulmuş olsun. Böylece kalan

ΚΗ : ΒΘ :: ΗΛ : ΘΓ.

İzlemeyle
ΚΗ : ΗΛ :: ΒΘ : ΘΓ,

ve ΚΛ ve ΒΓ paraleldir. Böylece

Α, Η, ve Θ noktalarından [geçen çizgi] doğrudur.

Lemma XVI 



Lemma XVII (Önerme )

. Ama o halde ΑΒ ve Γ∆ paralel olmasın, ama Ν’de kesişmiş
olsun.

Kanıt. Dolayısıyla aynı Α noktasından üç doğru ΒΝ, ΒΓ, ve ΒΖ
üzerine iki doğru ∆Ε ve ∆Ν sürdürülmüş olduğundan,

Ν∆ · ΓΖ : ΝΓ · ∆Ζ :: ∆Ε · ΚΛ : ΕΛ · Κ∆.

Ve
Ε∆ · ΚΛ : ΕΛ · Κ∆ :: ΕΘ · ΓΗ : ΕΓ ·ΘΗ

(zira yine üç doğru ΓΛ, ∆Θ, ve ΗΚ üzerine aynı Ε noktasından
sürdürülmüştür iki doğru ΕΓ ve Ε∆). Ayrıca

ΕΘ · ΓΗ : ΕΓ · ΘΗ :: Ν∆ · ΓΖ : ΝΓ · Ζ∆.

O halde önceden yazılmıştan

Α, Θ, ve Λ’dan [geçen çizgi] doğrudur.

Böylece

Α, Μ, ve Λ’dan [geçen çizgi] doğrudur.
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Lemma XVIII (Önerme )

. Üçgen ΑΒΓ [olsun], ve ΒΓ’ya paralel olan Α∆ ilerletilmiş
olsun, ve ∆Ε ve ΖΗ sürdürülmüş olsun. Ayrıca

ΕΒ2 : ΕΓ · ΓΒ :: ΒΗ : ΗΓ

olsun (ἔστω δὲ ως τὸ ἀπὸ ΕΒ πρὸς τὸ ὑπὸ ΕΓΒ, οὕτως ἡ ΒΗ
πρὸς τὴν ΗΓ). O zaman Β∆ birleştirilirse,

Θ, Κ, Γ’dan [geçen çizgi] doğru olur.

Kanıt. ΕΒ2 : ΕΓ · ΓΒ :: ΒΗ : ΗΓ olduğundan, ΕΓ · ΓΒ : ΕΒ · ΒΓ ile
aynı olan ortak ΓΕ :ΕΒ oranı eklenmiş olsun. Böylece eşitlikten

ΕΒ2 : ΕΒ · ΒΓ
ΕΒ : ΒΓ

}

:: (ΒΗ : ΗΓ)(ΕΓ · ΓΒ : ΕΒ · ΒΓ
︸ ︷︷ ︸

ΕΓ : ΕΒ

).

Öyleyse

ΕΒ2 : ΕΒ · ΒΓ :: (ΒΗ : ΗΓ)(ΕΓ : ΕΒ)
:: ΕΓ · ΒΗ : ΕΒ · ΓΗ.

Önceden yazılmış lemmadan

ΕΒ : ΒΓ :: ∆Ζ · ΘΕ : ∆Ε · ΖΘ,
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ve böylece

ΓΕ · ΒΗ : ΓΗ · ΕΒ :: ∆Ζ · ΘΕ : ∆Ε · ΖΘ.

Böylece

Θ, Κ, ve Γ’dan [geçen çizgi] doğrudur,

zira bu, [Lemma X’un] karşıt tersinin durumlarındadır.

Lemma XVIII 



Lemma XIX (Önerme )

. Üç doğru ΑΒ, ΑΓ, Α∆ üzerine bir Ε noktasından iki doğru
ΕΖ ve ΕΒ sürdürülmüş olsun. Ayrıca

ΕΖ : ΖΗ :: ΘΕ : ΘΗ

olsun. O zaman
ΒΕ : ΒΓ :: Ε∆ : ∆Γ

meydana gelir.

Kanıt. Η’dan ΒΕ’a paralel olan ΛΚ ilerletilmiş olsun. Dolayı-
sıyla

ΕΖ : ΖΗ :: ΕΘ : ΘΗ

olduğundan, ama

ΕΖ : ΖΗ :: ΕΘ : ΘΗ,

ΕΘ : ΘΗ :: ∆Ε : ΗΛ

olduğundan, böylece ayrıca

ΒΕ : ΗΚ :: ∆Ε : ΗΛ.

İzlemeyle
ΕΒ : Ε∆ :: ΚΗ : ΗΛ.

Ve
ΚΗ : ΗΛ :: ΒΓ : Γ∆.


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Böylece ayrıca
ΒΕ : Ε∆ :: ΒΓ : Γ∆.

İzlemeyle
ΕΒ : ΒΓ :: Ε∆ : ∆Γ.

[Diğer] durumlar da benzerdir.

Lemma XIX 



Ek

Fiiller Sözlüğü

ἄγω ilerle= (örneğin Lemma I’de: ῎Ηχθω διὰ τοῦ Ζ τῇ Β∆

παράλληλος ἡ ΖΛ, “Ζ’dan Β∆’ya paralel olan ΖΛ ilerletil-
miş olsun”)
ἀγάγω (sadece Lemma IV’te: ᾿Εὰν γὰρ διὰ τοῦ Ε τῇ

ΘΓ παράλληλον ἀγάγω τὴν ΕΞ, “Eğer Ε’dan ΘΓ’ya
paralel olan ΕΞ ilerlersem”)

διάγω sürdür= (örneğin Lemma III’te: Εἰς τρεῖς εὐθείας
τὰς ΑΒ ΓΑ ∆Α διήχθωσαν δύο εὐθεῖαι αἱ ΘΕ Θ∆,
“Üç doğru ΑΒ, ΓΑ, ve ∆Α üzerine iki doğru ΘΕ ve
Θ∆ sürdürülmüş olsun”)

ἁιρέω

ἀφαιρέω ayır= (Lemma VIII)
βάλλω

ἐκβάλλω uzat=
μεταβάλλω değiştir=

γιγνόμαι ol= (doğ=, meydana gel=)
γράφω

προγράφω önceden yaz=
δείκνυμι göster=

ἀποδείκνυμι kanıtla= (Lemma XII)
εἰμι ol=
ἐρῶ söyle= (λέγω’nun gelecek zamanı olarak kullanılır.

Lemma VI’da sadece: ἑκατέρων γὰρ τῶν εἰρημένων ὁ

αὐτός ἐστιν τῷ τῆς ΘΗ πρὸς τὴν ΗΕ λόγος, “zira söylen-





miş [iki oranın] her biri, ΘΗ : ΗΕ oranıyla aynıdır”)
ἔχω -i ol=
ζεύγνυμι birleştir=

ἐπιζεύγνυμι birleştir=
θεωρέω

προθεωρέω önceden bak= (Sadece Lemma XV’te:
Τούτου προτεθεωρημένου [genitivus absolutus], “Bu
önceden bakılmış olunca”)

κεῖμαι otur=
προσκεῖμαι eklen=
ὑποκεῖμαι varsayıl=

κλάω eğ= (Lemma IX: κεκλάσθω ἡ ΖΘΗ, “ΖΘΗ eğilmiş olsun”)
κρούω

ἐκκρούω kov=
λαμβάνω al= (Lemma XVI’da: ἐπ´ αὐτῶν εἰλήφθω σημεῖα τὰ

Η Θ, “bunlarda Η ve Θ noktaları alınmış olsun”)
πίπτω

ἐμπίπτω üzerine düş=
συμπίπτω kesiş= (her zaman συμπιπτέτω [tekil] veya

συμπιπτέτωσαν [çoğul], “kesişmiş olsun”)
τίθημι koy= (Lemma VI: ἐὰν γὰρ ἐπὶ τῆς ΕΒ θῶ τῇ ΗΒ ἴσην

τὴν ΒΘ, “zira eğer ΕΒ’da ΗΒ’ya eşit olan ΒΘ’yı koyar-
sam”)

τυγχάνω rastla= (τυχόν, “rasgele”: aşağıya bakın)

Ek 



Edatlar Sözlüğü

ἀλλά ama

ἄλλο δέ τι τυχὸν τὸ ὑπὸ τῶν . . . . . . . . . · . . . da başka ras-
gele bir [çarpımdır] (örneğin Lemma III’e bakın)

ἄρα böylece

διὰ ταὐτά aynı [sebep]le

γάρ zira

[genitivus absolutus] -ince

δέ de, ve

δή o halde

ἐπεί -diğinden

καί de, dahi, ve, ayrıca—örneğin Lemma I’de:

ἔστιν ἄρα ὡς ἡ ΕΒ πρὸς τὴν ΒΛ,
οὕτως ἐν παραλλήλῳ ἡ ΕΚ πρὸς τὴν ΚΖ,

καὶ ἡ ΕΘ πρὸς τὴν ΘΗ,

Böylece paralellerden ΕΒ : ΒΛ ::

{

ΕΚ : ΚΖ,

∆Θ : ΖΗ.

κατὰ τὰ αὐτά aynı [şekil]de

μέν. . . δέ •. . . •. . . de

οὖν dolayısıyla
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πάλιν yine

τουτέστιν yani—örneğin Lemma I’de:

ἐστιν ὡς ἡ ∆Α πρὸς τὴν ΑΖ,
τουτέστιν ἐν παραλλήλῳ ὡς ἡ ΒΑ πρὸς τὴν ΑΛ,

οὕτως ἡ ΓΑ πρὸς τὴν ΑΗ,

∆Α : ΑΖ
︸ ︷︷ ︸

ΒΑ : ΑΛ

:: ΓΑ : ΑΗ,

ve Lemma III’te:

ὡς τὸ ὑπὸ τῶν ΕΘ ΗΖ πρὸς τὸ ὑπὸ ΕΖ ΗΘ,

οὕτως τὸ ὑπὸ ΕΖ ΘΜ πρὸς τὸ ὑπὸ ΕΖ ΗΘ,

τουτέστιν ἡ ΘΜ πρὸς ΘΗ,

τουτέστιν ἡ ΛΘ πρὸς τὴν ΘΚ,

ΕΘ · ΗΖ : ΕΖ · ΗΘ :: ΕΖ ·ΘΜ : ΕΖ · ΗΘ
:: ΘΜ : ΘΗ

:: ΛΘ : ΘΚ.

ὥστε öyleyse

Ek 



Yunan Alfabesi

Α α alfa
Β β beta
Γ γ gamma
∆ δ delta
Ε ε epsilon (“çıplak e”)
Ζ ζ zeta
Η η eta
Θ θ theta
Ι ι iota
Κ κ kappa
Λ λ lambda
Μ μ mü
Ν ν nü
Ξ ξ ksi
Ο ο omikron (“küçük o”)
Π π pi
Ρ ρ ro (rho)
Σ σ, ς sigma
Τ τ tau
Υ υ üpsilon
Φ φ fi (phi)
Χ χ hi (khi, chi)
Ψ ψ psi
Ω ω omega (“büyük o”)

Harfler, Yunan Font Derneği’nin “NeoHellenic” fontundan alı-
nır. Bu font

δ = δ, Ε = Ε, ζ = ζ, Ξ = � = �, Ω = Ω

alternatif biçimlerini sağlar. Sigmanın küçük ς biçimi sadece
bir sözcüğün sonunda kullanılır.
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