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 Introduction

This is about

• how to construct a regular heptakaidecagon and

• why the construction works.

We shall justify everything in terms of the Elements of Euclid [, , , ].

A heptakaidecagon is a polygon with seventeen sides; a regular polygon has
all sides equal to one another and all angles equal to one another. We shall
be inscribing a regular heptakaidecagon in a given circle.

Such an inscription, or at least its existence, was first announced in  []
by Carl Friedrich Gauss, who had been born in  and who included his
result in the seventh and last section, called “Equations Defining Sections of
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a Circle,” of his Disquisitiones Arithmeticae [, pages –], published in
.

The treatment below will be based on Gauss’s and on that of Hardy and
Wright in An Introduction to the Theory of Numbers [, pages –] (first
edition, ; fifth edition, ). The latter treatment is nearly copied
(with attribution) from Richmond, “A Construction for a Regular Polygon of
Seventeen Sides” [] ().

Since all of Gauss’s work can be expressed in Euclidean terms, we may ask
why Euclid or Archimedes did not actually do it (as far as we know).

Euclid constructed some regular polygons. Indeed, the first proposition of the
first book of the Elements is to construct an equilateral triangle or “trigon.”
As we learn in the fifth proposition, the equilateral triangle is also equiangular
and is therefore regular.

The regular quadrilateral—or quadrangle or “tetragon”—is a square, con-
structed in Proposition .
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In Book iv of the Elements, Euclid constructs regular polygons with five, six,
and fifteen sides.

The construction of the regular pentagon may be more difficult than any
earlier proposition.

The construction of the regular pentekaidekagon works because

• 15 = 3 · 5,
• 3 and 5 are prime and therefore prime to one another.

Euclid treats numbers, prime and otherwise, in Books vii–ix of the Elements.

He presumably recognizes that, if k is prime to n, and the regular k-gon and
n-gon are constructible, then so is the regular kn-gon. This is true because,
by what we call the Euclidean Algorithm, developed in the first propositions
of Book vii, we can find counting numbers that solve one of the equations

kx = ny + 1, ny = kx+ 1.

Correspondingly,

x

n
−
y

k
=

1

kn
,

y

k
−
x

n
=

1

kn
,
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and thus, from the nth and kth parts of the circle, we can obtain the knth
part.

If the regular n-gon is constructible, then so is the regular 2n-gon: Euclid
will use this in establishing Proposition  of Book xii, that circles are to one
another in the ratio of the squares on their diameters.

Perhaps that proposition is the deepest of the Elements. It is summarized
today by the equation

A = πr2

for the area of a circle in terms of the radius. If people are afraid of an
equation like that, it may be for good reason, because it hides all of the work
needed for Euclid’s proof. That proof uses the principle on which today’s
calculus is based: that if two magnitudes have a ratio, in the sense that some
multiple of the less exceeds the greater, then the excess of the greater over
the less also has a ratio to the greater (hence to the less as well).

Euclid uses this principle already in Proposition  of Book v, the book that
lays out the abstract theory of ratio.
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Probably Euclid and other Ancients tried to construct a regular heptagon.
They failed. I do not know whether they then tried to prove that the con-
struction was impossible.

Euclid does prove that some things are impossible. He does it in each case
of what we call a proof by contradiction. The first example is in Proposition
i., that a triangle with equal base angles is isosceles, because its not being
isosceles is impossible.

By what we have said, Euclid could construct a regular polygon whose number
of sides is any of

3, 4, 5, 6, 8, 10, 12, 15, 16.

The regular heptagon (for example) cannot be constructed, because, briefly,

• 7 is prime;
• 7− 1 = 6,
• 6 = 2 · 3.

The problem is the factor 3. Constructing the regular heptagon would require
us to take cube roots, and we cannot do that with ruler and compass. We




can take square roots, and this, briefly, is why we can construct the regular
heptakaidecagon:

• 17 is prime,
• 17 − 1 = 16,
• 16 is a power of 2 (namely 24).

Now we work out the details.





 Construction

First we just lay out the steps of the construction of the regular heptakaidecagon,
giving no reason why they do have that result (this comes in Chapter ).





We are given a circle.
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By Proposition iii. of the
Elements, we can construct
the center of the circle,
which we label as O.

bO
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We label a diameter as AB. bO

A

B
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By Proposition i. of the
Elements, we bisect OB,
letting the midpoint be C.

b

b

O

A

B

C
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We likewise let the mid-
point of OC be D.

b

b

b

O

A

B

C

D
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By Proposition i. of the
Elements, we construct the
perpendicular to AB at O,
meeting the circle at M .

b

b

O

A

B

C

D

M
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We join DM .
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We extend AB.
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We construct a circle with
center O and distanceDM ,
meeting AB at G and the
extension of AB at H.
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M
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We let the midpoint of

• OG be N ,

• OM be P ,

• OH be R.
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We join NP and RP .
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We construct circles

• with center N and
distance NP , meet-
ing NB at L (which
is between O and D,
though this is hard to
see);

• with center R and
distance RP , meet-
ing RA at Q.
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We let the midpoint of

• OL be S,

• OQ be U .
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Now an asymmetry: We
let the circle with diameter
AS meet OM at T .
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We join UT .
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We construct the circle
with center U and distance
UT , meeting UA at K3.
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We erect a perpendicular
to AB at K3, meeting the
original circle at A3.
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We join AA3.
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By Proposition iv. of the
Elements, we fit in the orig-
inal circle, end to end, five
lengths equal to AA3.
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A12

A15

b

O

A

B

C

D

G

H

M

N

P

L

R

Q

S

U

T

K3





We fit in six more lengths
equal to AA3.
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We fit in five more lengths
equal to AA3.
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Finally, we join A14A. This
too is equal to AA3, so that
we have constructed the
seventeen vertices of a reg-
ular heptakaidecagon; but
we must show this.
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 Analysis
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Assuming a regular hep-
takaidekagon exists, we ask
what we can use to

• construct it, then
• prove that we have

constructed it.
We shall try to do every-
thing in Euclidean terms.

However, our work will be
easier if we use the modern
practice of numbering the
vertices, instead of just let-
tering them.

Α
Β

Γ

∆

Ε

Ζ

Η

Θ

ΚΛ

Μ

Ν

Ξ

Π

Ρ

Σ

Τ
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We number the vertices as
if on a clock with seventeen
hours.

A1

A2

A3

A4

A5

A6

A7

A8A9

A10

A11

A12

A13

A14

A15

A16
A
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We intend for our hep-
takaidekagon to be in-
scribed in a circle whose

• center is O,
• diameter is AB.

Then O is the center of
gravity of the heptakaidek-
agon, by such arguments
as Archimedes makes in De

planorum aequilibriis sive

de centris gravitatis I [, ].

bO

A
A1

A2
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A4

A5
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A8A9

A10
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A14

A15

A16

B
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We let the foot on AB of
the perpendicular from

• A1 be K1,

• A2 be K2,

and so on to K8, which is
also the foot of the perpen-
dicular from K9, as K7 is,
from K10, and so on.
If we can construct any of
the points K1, . . . , K8,
then we can construct the
heptakaidekagon.

A1

A2

A3

A4

A5

A6

A7

A8A9

A10

A11
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A14

A15
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Given two points X and Y on AB, we can
find Z on AB meeting two conditions:

. Y Z = OX.

. Z and X are on the same sides of Y and
O respectively.

If the first condition is satisfied, the second
condition is equivalent to

XZ = OY.

If both conditions are satisfied, let us say Z

is the sum of X and Y , and let us write

Z = X + Y.

b

b

b

b

O

A

B

X

Y

Z
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The two points X and Y need not be on the
same side of O. In any case, again, if

X + Y = Z,

this means

OX = Y Z,

OY = XZ.

Perhaps adding two points together is a
pretty modern idea. However, the equation
X + Y = Z abbreviates

OX +OY = OZ,

but here OX, OY , and OZ are not just seg-

ments, but directed segments.

b

b

b
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B

X

Y

Z
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We can even allow Y not to be in a straight
line with O and X. In this case, we still say

X + Y = Z,

provided OXZY is a parallelogram. As
Archimedes shows, the center of gravity of
the parallelogram is the intersection of the
two diagonals. If this is U , then also

Z = 2U,

and therefore

X + Y = 2U.

bO

A

B

X

Y

Z

U
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We now have

A+B = O,

A1 +A16 = 2K1,

A2 +A15 = 2K2,

and so on. By symmetry,

A+A1 + · · ·+A16 = O.

Hence

B = A1 + · · · +A16

= 2(K1 + · · ·+K8).

Finally, C being the mid-
point of OB,

C = K1 + · · · +K8.

A1

A2

A3

A4

A5

A6

A7
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Now C is the sum at the root of the tree below. We are going to construct
the rest of these sums, from root to branch.

K1 +K2 +K3 +K4 +K5 +K6 +K7 +K8

K1 +K2 +K4 +K8

K1 +K4

K1 K4

K2 +K8

K2 K8

K3 +K5 +K6 +K7

K3 +K5

K3 K5

K6 +K7

K6 K7
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We start by letting

K1 +K2 +K4 +K8 = G,

K3 +K5 +K6 +K7 = H.

Then
G+H = C.

We shall show how

G ·H = A ·B,

and this will let us construct G and H.

A1

A2

A3

A4

A5

A6

A7

A8

K1

K2

K3

K4

K5

K6

K7

K8
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C

G

H
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Of two points X and Y on AB, the product,

X · Y,

is a rectangle whose sides are equal to OX

and OY ; also, if

X · Y = Z ·W,

this means X and Y , and Z and W , are alike
on the same side of O, or opposite sides.

Again, we are going to show

G ·H = A ·B.

We shall do this, using Ptolemy’s Theorem,

from the Almagest [, pages –], [, pages
–], [, pages –].

b
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b

b

O

A

B

C

G

H
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Ptolemy’s Theorem is that,
if a quadrilateral ΑΒΓ∆ is in-
scribed in a circle, then

ΑΓ · Β∆ =

ΑΒ · Γ∆ + ΒΓ · Α∆

—the product of the diagonals
is the sum of the products of
the opposite sides.
We shall prove this using

• similar triangles, as in
Book vi of the Ele-

ments,

• Proposition iii. (“The
angles in the same seg-
ment are equal to one
another”).

Α

Β

Γ

∆
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In particular,

6 ΑΓΒ = 6 Α∆Β.

When Ε on Β∆ ensures

6 ΓΑΒ = 6 ∆ΑΕ,

then triangles ΓΑΒ and ∆ΑΕ

are similar by Proposition
vi., and thus

ΑΓ : ΒΓ :: Α∆ : Ε∆.

By Proposition vi. then,

ΑΓ · Ε∆ = Α∆ · ΒΓ.

Α

Β

Γ

∆

Ε
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Again,

ΑΓ · Ε∆ = Α∆ · ΒΓ.

Likewise, Γ∆Α and ΒΕΑ are
similar, so

ΑΓ · ΒΕ = ΑΒ · Γ∆.

By Proposition ii.,

ΑΓ · Β∆ =

ΑΓ · ΒΕ + ΑΓ · Ε∆.

All this combined gives

ΑΓ · Β∆ =

ΑΒ · Γ∆ + ΒΓ · Α∆.

Α

Β

Γ

∆

Ε
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Thus, Ptolemy’s Theorem is that a cer-
tain product is a sum of two products.
We shall give those two products a com-
mon factor.

On a circle with diameter OA,
• A chord V V ′ is at right angles

to a diameter V V ′, so that, by
Proposition iii. of the Elements,

V L = V L′, V ′L = V ′L′.

• O is between V and L on the cir-
cumference.

We shall show

2OV ′
· V L = (OL′ +OL) ·OA,

2OV · V ′L = (OL′
−OL) ·OA.

A

O

L′

L

V

V ′
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We first look at OLV ′V , in which

OV ′
· V L = OV · V ′L+OL · V V ′.

As Ptolemy observes, since V V ′ is a di-
ameter,

OV ′
· V L = OV · V ′L+OL ·OA.

A

O

L′

L

V

V ′
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Likewise, in OV ′L′V ,

OV ′
· V L′ +OV · V ′L′ = OL′

· V V ′,

and therefore

OV ′
· V L+OV · V ′L = OL′

· OA.

A

O

L′

L

V

V ′





Our two results are

OV ′
· V L+OV · V ′L = OL′

· OA,

OV ′
· V L = OV · V ′L+OL ·OA.

Adding and subtracting them respec-
tively yields the geometric product for-

mulas

2OV ′
· V L = OL′

·OA+OL · OA,

= (OL′ +OL) · OA,

2OV · V ′L = OL′
·OA−OL · OA,

= (OL′
−OL) · OA.

A

O

L′

L

V

V ′
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Our first formula,

2OV ′
· V L = (OL′ +OL) ·OA,

takes the modern form

2 cos φ · cosψ = cos(ψ − φ) + cos(ψ + φ)

under the following correspondence in
right triangles whose hypotenuses are di-
ameters.

length arc angle

OV ′ AV ′ φ

V L V ′L ψ

OL′ L′A ψ − φ

OL AL ψ + φ

φ

ψψ

A

O

L′

L

V

V ′
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We have just established the product formula for cosines,

2 cosφ · cosψ = cos(ψ − φ) + cos(ψ + φ),

when φ and ψ are acute. Since

cos(−φ) = cosφ, cos(π− φ) = − cosφ,

if φ is obtuse, then

2 cos(π− φ) · cosψ = cos(ψ − π+ φ) + cos(ψ + π− φ)

and therefore the product formula still holds. We shall apply it, understanding
the cosine of the angle AOAℓ to be the ratio of Kℓ to A, so that

2Kℓ ·Km = (Kℓ+m +Kℓ−m) · A.

Meanwhile, we can obtain the product formula for cosines, one angle obtuse,
from the second of our geometric formulas.
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Thus

2OV · V ′L = (OL′
−OL) ·OA

also becomes

2 cosφ · cosψ = cos(ψ + φ) + cos(ψ − φ),

but with φ obtuse, under:

length arc angle

OV V A π− φ

V ′L V L′ ψ

OL′ L′A π− φ− ψ

OL AL φ− ψ

φ

ψ

ψ

A

O

L′

L

V

V ′
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We now establish geometrically a spe-
cial case of the rule

2Kℓ ·Km = (Kℓ+m +Kℓ−m) · A.

One can also just skip ahead to page
.

We may choose V and L so that, for
example,

OL = OK2, OV = OK5.

A1

A2

A3

A4

A5

A6

A7

A8

b

b

b

b

b

b

bbbbbbbb

O

A

B

K2

L

K5

V
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Since V V ′ is a diameter, also OV ′ is at
right angles to OA5.

Since, as angles,

K3OA3 = A2OA5,

their complements are equal, and there-
fore

OA3K3 = V ′OL = V ′V L.

Consequently

V ′L = OK3.

A1

A2

A3

A4

A5

A6

A7

A8

b

b

b

b

b

b

bbbbbbbb

O

A

B

K2

L
K3

K5

V

V ′
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Finally, since OV ′ bisects LOL′, also
OA5 bisects the angle externally.

At the same time, OA5 bisects A2OA8.
Thus L′ lies on the extension of A8O

and
OL′ = OK8.

Now

2OV · V ′L = (OL′
−OL) · OA

becomes

2OK5 ·OK3 = (OK8 −OK2) ·OA,

and therefore

2K3 ·K5 = (K2 +K8) ·A.

A1

A2

A3

A4

A5

A6

A7

A8

b

b

b

b

b

b

bbbbbbbb

O

A

B

K2

L
K3

K5

V

K8

L′
V ′
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Our tree from earlier will be

C

G

L′

K1 K4

L

K2 K8

H

Q

K3 K5

Q′

K6 K7

where again the node just below a pair of nodes is their sum. We shall be
showing

G ·H = B · A, L′
· L = D · A, Q ·Q′ = D ·A.

This is somehow ensured by the analysis of the points K1, . . . ,K8 given by
the tree. The general idea is as follows, but one also can skip it and go to
page .
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We said the points A1, A2, . . . were numbered as if on a clock with 17 hours.
Thus we can understand

A1 = A18 = A35 = A52 = . . .

and likewise for A2, A3, and so on. Also,

A1 = A−16 = A−33 = A−50 = . . .

In particular,

2K1 = A1 +A16 = A1 +A−1, 2K2 = A2 +A15 = A2 +A−2,

and so on.





The last proposition about numbers in the Elements, namely Proposition
ix., has the enunciation, in Heath’s translation,

If as many numbers as we please beginning from an unit be set out contin-

uously in double proportion, until the sum of all becomes prime, and if the

sum multiplied into the last make some number, the product will be perfect.

Thus we are to set out

1, 2, 4, 8, 16, 32, 64, 128, 256,

and so on, and the successive sums of the terms are

1, 3, 7, 15, 31, 63, 127, 255, 511.

Since 3, 7, 31, and 127 are prime, each of the products 2 · 3, 4 · 7, 16 · 31,
and 64 · 127 is perfect in the sense of being “equal to its own parts,” as in the
definition at the head of Book vii; for example,

4 · 7 = 28 = 1 + 2 + 4 + 7 + 14.
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In the sequence

2, 4, 8, 16, 32, 64, 128, 256

of powers of 2, the fourth, namely 16, being one less than 17, the eighth,
namely 256, must be one more than a multiple of 17. Indeed,

256 = 17 · 15 + 1.

No previous power has this property. Also,

62 = 36 = 17 · 2 + 2.

Therefore the first 16 powers of of 6 serve as indices for each of A1, . . . , A16.
Here are the remainders of those powers after being measured or “divided” by
17.

6 62 63 64 65 66 67 68 69 610 611 612 613 614 615 616

6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1





In Gauss’s terminology, the 16 different points Ak compose a period of length
16. Then, if we take every other point of a period, according to the order

1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3,

from the table (the number 1 can come first or last, it doesn’t matter), this
too is a period, of half the length. The halves of the sums of the points of the
periods are just the nodes on our tree:

K1 +K6 +K2 +K5 +K4 +K7 +K8 +K3

K1 +K2 +K4 +K8

K1 +K4

K1 K4

K2 +K8

K2 K8

K6 +K5 +K7 +K3

K6 +K7

K6 K7

K5 +K3

K5 K3
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We can define the product of two points on the circle by the rule

Aℓ · Am = Aℓ+m · A.

This is compatible with multiplication of points on AB; for example,

2Kℓ · 2Km = (Aℓ +A−ℓ)(Am +A−m)

= (Aℓ+m +A−ℓ−m +Aℓ−m +A−ℓ+m) ·A

= 2(Kℓ+m +Kℓ−m) ·A,

and thus
2Kℓ ·Km = (Kℓ+m +Kℓ−m) · A.

This is a case of what Gauss shows, that (A being treated as 1) the product

of the sums of two periods of the same length is a sum of that many periods

of that length. For example, writing Am as [m] as Gauss does, we have

2(K2 +K8) · 2(K5 +K3) = ([2] + [8] + [15] + [9]) · ([5] + [3] + [12] + [14]).

We compute as on the next page.





([2] + [8] + [15] + [9]) · ([5] + [3] + [12] + [14])

= ([2] + [2 · 64] + [2 · 68] + [2 · 612]) · ([5] + [5 · 64] + [5 · 68] + [5 · 612]),

and this is

[2 + 5] + [2 + 5 · 64] + [2 + 5 · 68] + [2 + 5 · 612]
+ [2 · 64 + 5] + [2 · 64 + 5 · 64] + [2 · 64 + 5 · 68] + [2 · 64 + 5 · 612]
+ [2 · 68 + 5] + [2 · 68 + 5 · 64] + [2 · 68 + 5 · 68] + [2 · 68 + 5 · 612]
+ [2 · 612 + 5] + [2 · 612 + 5 · 64] + [2 · 612 + 5 · 68] + [2 · 612 + 5 · 612].

If we rearrange the summands of each row, we get

[2 + 5] + [2 + 5 · 64] + [2 + 5 · 68] + [2 + 5 · 612]
+ [2 · 64 + 5 · 64] + [2 · 64 + 5 · 68] + [2 · 64 + 5 · 612] + [2 · 64 + 5]
+ [2 · 68 + 5 · 68] + [2 · 68 + 5 · 612] + [2 · 68 + 5] + [2 · 68 + 5 · 64]
+ [2 · 612 + 5 · 612] + [2 · 612 + 5] + [2 · 612 + 5 · 64] + [2 · 612 + 5 · 68].

Each column is a sum [k] + [k · 64] + [k · 68] + [k · 612] (since [616] = [1]).
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Starting out with

G = K1 +K2 +K4 +K8,

H = K3 +K5 +K6 +K7.

We shall construct G and H from
• G+H, which is C;
• G ·H, which is a sum of sixteeen prod-

ucts Kℓ · Km, each of which is half of
(Kℓ+m +Kℓ−m) ·A.

Again, we shall end up with

G ·H = A ·B,

and then we can find G and H using Propo-
sition ii. of the Elements.

A1

A2

A3

A4

A5

A6

A7

A8

K1

K2

K3

K4

K5

K6

K7

K8

b

b

b

O

A

B

C

G

H
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We compute

2K1 ·K3 = (K2 +K4) ·A,

2K1 ·K5 = (K4 +K6) ·A,

2K1 ·K6 = (K5 +K7) ·A,

2K1 ·K7 = (K6 +K8) ·A,

2K2 ·K3 = (K1 +K5) · A,

2K2 ·K5 = (K3 +K7) · A,

2K2 ·K6 = (K4 +K8) · A,

2K2 ·K7 = (K5 +K8) · A,

2K4 ·K3 = (K1 +K7) ·A,

2K4 ·K5 = (K1 +K8) ·A,

2K4 ·K6 = (K2 +K7) ·A,

2K4 ·K7 = (K3 +K6) ·A,

2K8 ·K3 = (K5 +K6) · A,

2K8 ·K5 = (K3 +K4) · A,

2K8 ·K6 = (K2 +K3) · A,

2K8 ·K7 = (K1 +K2) · A.

Each of K1, . . . , K8 appears four times on the right, so

G ·H = (K1 +K2 +K4 +K8) · (K3 +K5 +K6 +K7)

= 2(K1 + · · ·+K8) · A = 2C · A = A ·B.
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By Proposition ii. of the Elements, if
• Γ bisects ΑΒ,
• Β∆ is added to ΑΒ,

then
Α∆ · Β∆ + ΓΒ

2 = Γ∆
2,

that is, equal are
• the sum of

– the rectangle contained by
∗ the whole ΑΒ with the added

length Β∆, and
∗ the added length Β∆; and

– the square on the half, namely ΓΒ;
• the square on Γ∆, which is the half with

the added length.

Α

Β

Γ

∆

Ε

Ζ

Η
Θ

Κ

Λ

Μ
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Again, ΑΓ = ΓΒ and

Α∆ · Β∆ + ΓΒ
2 = Γ∆

2.

Perhaps we are given
• ΑΒ, thus Γ too;
• not Β∆ itself;
• but the product Α∆ · Β∆, as the square

on ΒΝ, this being at right angles to ΑΒ.
Then by Proposition i.,

ΒΝ
2 + ΓΒ

2 = ΓΝ
2.

Now we can find ∆, lying on the extension of
ΑΒ so that

Γ∆ = ΓΝ.

Α

Β

Γ

∆

Ε

Ζ

Η
Θ

Κ

Λ

Μ

Ν
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In short, given ΑΒ and ΒΝ, we have found
∆ on the extension of ΑΒ so that

Α∆ · Β∆ = ΒΝ
2.

That ∆ lies on the extension of ΑΒ means

Α∆ = ΑΒ + Β∆.

Though Euclid does not distinguish be-
tween Β∆ and ∆Β, we do, writing the last
equation also as

Α∆ + ∆Β = ΑΒ.

Thus we have found Α∆ and ∆Β, given
• their sum, ΑΒ;
• their product, ΒΝ

2.
Α

Β

Γ

∆

Ε

Ζ

Η
Θ

Κ

Λ

Μ

Ν
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What we have done in Cartesian terms is
show

a, b =
a+ b

2
±

√

(

a+ b

2

)2

− ab,

at least when

b < 0 < a.

Meanwhile, on our diameter AB, we found
for G and H the conditions

G+H = C, G ·H = A ·B.

In more traditional terms, the conditions are

GC = OH, OG · CG = OA2.

A1

A2

A3

A4

A5

A6

A7

A8

K1

K2

K3

K4

K5

K6

K7

K8

b

b

b

O

A

B

C

G

H
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Those conditions again are

GC = OH, OG · CG = OA2,

and from them we find G and H by first let-
ting the perpendicular to AB at O meet our
circle at M , so that

OM = OA.

Since also D is the midpoint of OC, the sec-
ond condition above becomes

OG · CG = OM2,

OG · CG+OD2 = OM2 +OD2,

DG2 = DM2,

and thus G and H are on the circle through
M with center D.

M

b

O

A

B

C

D

G

H
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The tree we made earlier is now as follows.

C

G

K1 +K4

K1 K4

K2 +K8

K2 K8

H

K3 +K5

K3 K5

K6 +K7

K6 K7

We have constructed C, G, and H. We can obtain K3 and K5, thus the whole
heptakaidecagon, from K3 +K5 and K3 ·K5, and therefore, since

2K3 ·K5 = (K2 +K8) · A,

from K3 +K5 and K2 +K8. Now we are going to obtain these two sums.
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We seek L and L′, where

L = K2 +K8, L′ = K1 +K4,

so
L+ L′ = G;

also, L will be on the B side of O, L′ on the
A side. We compute

L · L′ = D ·A,

since 2D = C = K1 + · · ·+K8 and

2K2 ·K1 = (K1 +K3) · A,

2K2 ·K4 = (K2 +K6) · A,

2K8 ·K1 = (K7 +K8) · A,

2K8 ·K4 = (K4 +K5) · A.

A1

A2

A3

A4

A5

A6

A7

A8

K1

K2

K3

K4

K5

K6

K7

K8

b

b

b

b

O

A

B

C

D

G

H
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Thus

L+ L′ = G, L · L′ = D · A,

that is,

LG = OL′, OL ·GL = OC2.

Then L and L′ are the intersections with AB
of the circle with center the midpoint, N ,
of OG, passing through the midpoint, P , of
OM . Again,

L = K2 +K8,

so
2K3 ·K5 = L · A.

We now find
K3 +K5.

b

b

b

O

A

B

C

G

H

M

N

P

L

L′
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We seek Q and Q′, where

Q = K3 +K5, Q′ = K6 +K7,

so
Q+Q′ = H;

also, Q will be on the A side of O, Q′ on the
B side. We compute

Q ·Q′ = D ·A,

since 2D = C = K1 + · · ·+K8 and

2K3 ·K6 = (K3 +K8) · A,

2K3 ·K7 = (K4 +K7) · A,

2K5 ·K6 = (K1 +K6) · A,

2K5 ·K7 = (K2 +K5) · A.

A1

A2

A3

A4

A5

A6

A7

A8

K1

K2

K3

K4

K5

K6

K7

K8

b

b

b

b

O

A

B

C

D

G

H
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Thus

Q+Q′ = H, Q ·Q′ = D ·A,

that is,

QH = OQ′, OQ ·HQ = OC2.

Then Q and Q′ are the intersections with AB
of the circle passing through P and with cen-
ter the midpoint, R, of OH.

b

b

b

b

b

O

A

B

C

D

G

H

M

R

P
Q

Q′



Finally, letting

2S = L = K2 +K8,

we have

K3 +K5 = Q, K3 ·K5 = S · A,

that is,

K3Q = OK5, OK3 ·QK3 = OT 2,

where, by Proposition ii., T is the inter-
section with OM of the circle with diame-
ter SA. Then K3 and K5 are the intersec-
tions with AB of the circle passing through
T whose center is the midpoint U of OQ.

b

b

O

A

B

M

L

Q

S T

U

K3

K5
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We now obtain A3 and A5,
and the heptakaidecagon
from either of these: here,
from K5.

A1

A2

A3

A4

A5

A6

A7

A8A9

A10

A11

A12

A13

A14

A15

A16

bO

A

B

K3

K5
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