Euclid, Elements, Proposition V.5
We give
- Euclid’s diagram and Greek, in the parts named by Pappus:
- Verbatim translation
- Algebraic interpretation
The Greek text and the diagram above are from the handy Euclid homepage of Dimitrios Mourmouras in the physics department of the National Technical University of Athens. One can download the page, or rather site, as I have done; and it turns out the webmaster also has a text of the Nicomachean Ethics, and much else.
The present page is interconvertible between txt and html formats by the pandoc program.
Translation of the Greek is made with the understanding that the following are cognate:
- “-ple” in “multiple,”
- “-fold” in “manifold,”
- -πλάσιον in
- πολλαπλάσιον “multiple, manifold,”
- ὁσαπλάσιον “as/however many times, how manifold, as manifold as,” and
- τοσαυταπλάσιον “so many times, so manifold.”
One can infer something of the relations of the three Greek words from the table in Smyth’s Greek Grammar as posted at Project Perseus:
Correlative Pronouns.—Many pronominal adjectives correspond to each other in form and meaning. In the following list poetic or rare forms are placed in ().
| τίς who? which? what? qui? |
τὶς some one, any one, aliquis, quidam |
(ὁ, ὅς) ὅδε this (here), hic
οὗτος this, that is, ille
ἐκεῖνος ille |
ὅς who, which, qui |
ὅστις whoever, any one who, quisquis, quicunque |
| πότερος which of two? uter? |
πότερος or ποτερός one of two (rare) |
ἕτερος the one or the other of two, alter |
ὁπότερος whichever of the two |
ὁπότερος whichever of the two, utercumque |
| πόσος how much? how many? quantus? quot? |
ποσός of some quantity or number |
(τόσος,) τοσόσδε, τοσοῦτος so much, so many, tantus, tot |
ὅσος as much as, as many as, quantus, quot |
ὁπόσος of whatever size, number, quantuscumque, quotquot |
| ποῖος of what sort? qualis? |
ποιός of some sort |
(τοῖος,) τοιόσδε, τοιοῦτος such, talis |
οἷος of which sort, (such) as, qualis |
ποῖος of whatever sort, qua liscumque |
| πηλίκος how old? how large? |
πηλίκος of some age, size |
(τηλίκος,) τηλικόσδε, τηλικοῦτος so old, young, so large, so great |
ἡλίκος of which age, size, (as old, as large) as |
ὁπηλίκος of whatever age or size |
Now Euclid.
Πρότασις / Enunciation
| Ἐὰν |
μέγεθος |
μεγέθους |
ἰσάκις |
ᾖ |
πολλαπλάσιον, |
| If |
magnitude |
of magnitude |
equally |
be |
manifold, |
| ὅπερ |
ἀφαιρεθὲν |
ἀφαιρεθέντος, |
| that |
subtrahend |
of subtrahend, |
| καὶ |
τὸ λοιπὸν |
τοῦ λοιποῦ |
| also |
the remainder |
of the remainder |
| ἰσάκις |
ἔσται |
πολλαπλάσιον, |
| equally |
will be |
manifold, |
| ὁσαπλάσιόν |
ἐστι |
τὸ ὅλον |
τοῦ ὅλου. |
| how-manifold |
is |
the whole |
of the whole. |
Algebraically, if
A = B + C,
D = E + F,
A = nD,
B = nE,
then
For, suppose
By Proposition V.1 (whose enunciation is below),
A = B + C = nE + nG = n(E + G).
However,
Thus
n(E + G) = n(E + F),
E + G = E + F,
G = F.
If you don’t like the assumption
you can let
Then
B + H = nE + nF = n(E + F) = nD,
but also
so
Ἔκθεσις / Exposition
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Γ Ζ Δ
|--|--|--|--|--|--|
G Z D
| Μέγεθος γὰρ |
τὸ ΑΒ |
μεγέθους |
τοῦ ΓΔ |
| For, magnitude |
the AB |
of magnitude |
the GD |
| ἰσάκις |
ἔστω |
πολλαπλάσιον, |
| equally |
be |
manifold, |
| ὅπερ |
ἀφαιρεθὲν |
τὸ ΑΕ |
ἀφαιρεθέντος |
τοῦ ΓΖ. |
| that |
subtrahend |
the AE |
of subtrahend |
the GZ. |
Note. ἔστω “[let] be” is a third-person imperative, as in “Anger be now your song, immortal one” (Fitzgerald’s translation of the first three words of the Iliad, Μῆνιν ἄειδε θεά).
Διορισμός / Definition
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Γ Ζ Δ
|--|--|--|--|--|--|
G Z D
| λέγω, |
ὅτι |
καὶ |
λοιπὸν |
τὸ ΕΒ |
λοιποῦ |
τοῦ ΖΔ |
| I say |
that |
also |
remainder |
the AB |
of remainder |
the ZD |
| ἰσάκις |
ἔσται |
πολλαπλάσιον, |
| equally |
will be |
manifold, |
| ὁσαπλάσιόν |
ἐστιν |
ὅλον |
τὸ ΑΒ |
ὅλου |
τοῦ ΓΔ. |
| how-manifold |
is |
whole |
the AB |
of whole |
the GD. |
Κατασκευή / Construction
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| Ὁσαπλάσιον γάρ |
ἐστι |
τὸ ΑΕ |
τοῦ ΓΖ, |
| For, how-manifold |
is |
the AE |
of the GZ, |
| τοσαυταπλάσιον |
γεγονέτω |
καὶ |
τὸ ΕΒ |
τοῦ ΓΗ. |
| so-manifold |
become |
also |
the EB |
of the GH. |
Note. Here is another third-person imperative: γεγονέτω “[let] become.” Why we can make this command is a good question. An alternative is, however many AE is of GZ, so many to be AK of ZD.
Κ Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
K A E B
Γ Ζ Δ
|--|--|--|--|--|--|
G Z D
Ἀπόδειξις / Demonstration
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| Καὶ |
ἐπεὶ |
ἰσάκις |
ἐστὶ |
πολλαπλάσιον |
| And |
since |
equally |
is |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΕΒ |
τοῦ ΗΓ, |
| the AE |
of the GZ |
and |
the EB |
of the HG, |
| ἰσάκις |
ἄρα |
ἐστὶ |
πολλαπλάσιον |
| equally |
then |
is |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΑΒ |
τοῦ ΗΖ. |
| the AE |
of the GZ |
and |
the AB |
of the HZ. |
Note. This is by Proposition V.1.
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| κεῖται δὲ |
ἰσάκις |
πολλαπλάσιον |
| And, lie |
equally |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΑΒ |
τοῦ ΓΔ. |
| the AE |
of the GZ |
and |
the AB |
of the GD. |
| ἰσάκις |
ἄρα |
ἐστὶ |
πολλαπλάσιον |
| Equally |
then |
is |
manifold |
| τὸ ΑΒ |
ἑκατέρου |
τῶν ΗΖ, ΓΔ· |
| the AB |
of either |
of HZ, GD; |
| ἴσον |
ἄρα |
τὸ ΗΖ |
τῷ ΓΔ. |
| equal |
then |
the HZ |
to the GD. |
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| κοινὸν |
ἀφῃρήσθω |
τὸ ΓΖ· |
| Common |
be subtracted |
the GZ. |
| λοιπὸν |
ἄρα |
τὸ ΗΓ |
λοιπῷ |
τῷ ΖΔ |
ἴσον |
ἐστίν. |
| Remainder |
then |
the HG |
to remainder |
the ZD |
equal |
is. |
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| καὶ |
ἐπεὶ |
ἰσάκις |
ἐστὶ |
πολλαπλάσιον |
| And |
since |
equally |
is |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΕΒ |
τοῦ ΗΓ, |
| the AE |
of the GZ |
and |
the EB |
of the HG, |
| ἴσον δὲ |
τὸ ΗΓ |
τῷ ΔΖ, |
| and equal |
the HG |
to the DZ, |
| ἰσάκις |
ἄρα |
ἐστὶ |
πολλαπλάσιον |
| equally |
then |
is |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΕΒ |
τοῦ ΖΔ. |
| the AE |
of the GZ |
and |
the EB |
of the ZD. |
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| ἰσάκις δὲ |
ὑπόκειται |
πολλαπλάσιον |
| And equally |
lie |
manifold |
| τὸ ΑΕ |
τοῦ ΓΖ |
καὶ |
τὸ ΑΒ |
τοῦ ΓΔ· |
| the AE |
of the GZ |
and |
the AB |
of the GD; |
| ἰσάκις |
ἄρα |
ἐστὶ |
πολλαπλάσιον |
| equally |
then |
is |
manifold |
| τὸ ΕΒ |
τοῦ ΖΔ |
καὶ |
τὸ ΑΒ |
τοῦ ΓΔ. |
| the EB |
to the ZD |
and |
the AB |
of the GD. |
Α Ε Β
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
A E B
Η Γ Ζ Δ
|--|--|--|--|--|--|--|--|
H G Z D
| καὶ |
λοιπὸν |
ἄρα |
τὸ ΕΒ |
λοιποῦ |
τοῦ ΖΔ |
| Also |
remainder |
then |
the EB |
to remainder |
the ZD |
| ἰσάκις |
ἔσται |
πολλαπλάσιον, |
| equally |
will be |
manifold, |
| ὁσαπλάσιόν |
ἐστιν |
ὅλον |
τὸ ΑΒ |
ὅλου |
τοῦ ΓΔ. |
| so-manifold |
is |
whole |
the AB |
of whole |
the GD. |
Συμπέρασμα / Conclusion
| Ἐὰν |
ἄρα |
μέγεθος |
μεγέθους |
ἰσάκις |
ᾖ |
πολλαπλάσιον, |
| If |
then |
magnitude |
of magnitude |
equally |
be |
manifold, |
| ὅπερ |
ἀφαιρεθὲν |
ἀφαιρεθέντος, |
| that |
subtrahend |
of subtrahend |
| καὶ |
τὸ λοιπὸν |
τοῦ λοιποῦ |
| also |
the remainder |
of the remainder |
| ἰσάκις |
ἔσται |
πολλαπλάσιον, |
| equally |
will be |
manifold, |
| ὁσαπλάσιόν |
ἐστι |
καὶ |
τὸ ὅλον |
τοῦ ὅλου. |
| how-manifold |
is |
also |
the whole |
of the whole. |
| ὅπερ |
ἔδει |
δεῖξαι. |
| Q. |
E. |
D. |
Proposition V.1
| Ἐὰν |
ᾖ |
ὁποσαοῦν |
μεγέθη |
| If |
be |
however many |
magnitudes |
| ὁποσωνοῦν |
μεγεθῶν |
ἴσων |
τὸ |
πλῆθος |
| of however many |
magnitudes |
equal |
the |
multitude |
| ἕκαστον |
ἑκάστου |
ἰσάκις |
πολλαπλάσιον, |
| each |
of each |
equally |
manifold, |
| ὁσαπλάσιόν |
ἐστιν |
|
ἓν τῶν μεγεθῶν |
ἑνός, |
| how-manifold |
is |
|
one of the magnitudes |
of one, |
| τοσαυταπλάσια |
ἔσται |
καὶ |
τὰ πάντα |
τῶν πάντων. |
| so-manifold |
will be |
also |
the all |
of the all. |