Tag Archives: Donald Knuth


This is about the ordinal numbers, which (except for the finite ones) are less well known than the real numbers, although theoretically simpler.

The numbers of either kind compose a linear order: they can be arranged in a line, from less to greater. The orders have similarities and differences:

  • Of real numbers,

    • there is no greatest,

    • there is no least,

    • there is a countable dense set (namely the rational numbers),

    • every nonempty set with an upper bound has a least upper bound.

  • Of ordinal numbers,

    • there is no greatest,

    • every nonempty set has a least element,

    • those less than a given one compose a set,

    • every set has a least upper bound.

One can conclude in particular that the ordinals as a whole do not compose a set; they are a proper class. This is the Burali-Forti Paradox.

Diagram of reals as a solid line without endpoints; the ordinals as a sequence of dots, periodically coming to a limit Continue reading

NL I: “Body and Mind” Again

Index to this series

“We are beginning an inquiry into civilization,” writes Collingwood, “and the revolt against it which is the most conspicuous thing going on at the present time.” The time is the early 1940s.

Human tourists photographing sculptured supine blue ape with chrome testicles outside the Intercontinental Hotel, Prague Continue reading


This is about limits in mathematics: both the technical notion that arises in calculus, and the barriers to comprehension that one might reach in one’s own studies. I am going to say a few technical things about the technical notion, but there is no reason why this should be a barrier to your reading: you can just skip the paragraphs that have special symbols in them.

Looking up something else in the online magazine called Slate, I noted a reprint of an article called “What It Feels Like to Be Bad at Math” from a blog called Math With Bad Drawings by Ben Orlin. Now teaching high-school mathematics, Mr Orlin recalls his difficulties in an undergraduate topology course. His memories help him understand the difficulties of his own students. When students do not study, why is this? It is because studying makes them conscious of how much they do not understand. They feel stupid, and they do not like this feeling. Continue reading