Category Archives: Exposition

Expositions of a theorem or structure of mathematics

On Gödel’s Incompleteness Theorem

This is an appreciation of Gödel’s Incompleteness Theorem of 1931. I am provoked by a depreciation of the theorem.

I shall review the mathematics of the theorem, first in outline, later in more detail. The mathematics is difficult. I have trouble reproducing it at will and even just confirming what I have already written about it below (for I am adding these words a year after the original publication of this essay).

The difficulty of Gödel’s mathematics is part of the point of this essay. A person who thinks Gödel’s Theorem is unsurprising is probably a person who does not understand it.

In the “Gödel for Dummies” version of the Theorem, there are mathematical sentences that are both true and unprovable. This requires two points of clarification.

Continue reading

Boolean Arithmetic

Mathematics can be highly abstract, even when it remains applicable to daily life. I want to show this with the mathematics behind logic puzzles, such as how to derive a conclusion using all of the following premisses:

  1. Babies are illogical.
  2. Nobody is despised who can manage a crocodile.
  3. Illogical persons are despised.

The example, from Terence Tao’s blog, is attributed to Lewis Carroll. By the first and third premisses, babies are despised; by the second premiss then, babies cannot manage crocodiles.

George Boole, The Laws of Thought (1854), Open Court, 1940

Continue reading

The Tree of Life

My two recent courses at the Nesin Mathematics Village had a common theme. I want to describe the theme here, as simply as I can—I mean, by using as little technical knowledge of mathematics as I can. But I shall talk also about related poetry and philosophy, of T. S. Eliot and R. G. Collingwood respectively.


An elaborate binary tree, with spirals

Continue reading

The geometry of numbers in Euclid

This is about how the Elements of Euclid shed light, even on the most basic mathematical activity, which is counting. I have tried to assume no more in the reader than elementary-school knowledge of how whole numbers are added and multiplied.

How come 7 ⋅ 13 = 13 ⋅ 7? We can understand the product 7 ⋅ 13 as the number of objects that can be arranged into seven rows of thirteen each.

Seven times thirteen

Seven times thirteen

If we turn the rows into columns, then we end up with thirteen rows of seven each; now the number of objects is 13 ⋅ 7. Continue reading

The Hyperbola

Here is the model that I made of the hyperbola, or rather the conjugate hyperbolae, as Apollonius calls them.

Conjugate hyperbolae and their common diameter

Conjugate hyperbolae and their common diameter


Continue reading

The Parabola

I do not now recall my specific inspiration; but in January of 2012, sitting at home in Istanbul, I cut up a cardboard box in order to make a model of a parabola quâ conic section.

January 14, 2012

January 14, 2012


Continue reading

Self-similarity again

Here is an image that I made when preparing the article Self-similarity nine months ago. The image appeared as a draft in the list of all of my articles on this blog. Here it is officially:

Self-similarity

Animation: circles within circles

From the poster depicting a few von Neumann natural numbers, I created this animation. The moving image no longer depicts natural numbers in the sense of the poster, since there is no infinite descending chain of natural numbers. There is an infinite ascending chain of them; but the poster does not actually depict such a chain as nested circles. So running the animation in reverse would not give a correct suggestion of the original poster, even if it were of infinite size. Continue reading

The von Neumann natural numbers: a fractal-like image

See the next article, “Self-similarity,” for an animation of the image here.

I have long been fascinated by von Neumann’s definition of the natural numbers (and more generally the ordinals). In developing axioms for set theory, Zermelo used the sets 0, {0}, {{0}}, {{{0}}}, {{{{0}}}}, and so on as the natural numbers. Here 0 is the empty set. Zermelo’s method works, but is not so elegant as von Neumann’s later proposal to consider each natural number as the set of all natural numbers that are less than it is, so that (again) 0 is the empty set, but also n + 1 = {0, 1, …, n}.

Continue reading