Tag Archives: Maugham

Effectiveness

Preface

First published May 17, 2018, this essay concerns Eugene Wigner’s 1960 article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences.” I wrote a lot, which I now propose to summarize by section. (The meditations also continue in the next article.)

  • Some things are miraculous. Among Wigner’s examples are
    • that mathematics is possible at all, and
    • that “regularities” in the physical world can be discovered, as by Galileo and Newton.

    For Wigner, we should be grateful for the undeserved gift of a mathematial formulation of the laws of physics. This makes no sense theologically—and here I agree with the character Larry Darrell in Somerset Maugham’s novel The Razor’s Edge. Wigner’s idea that our mathematical reasoning power has been brought to perfection makes no sense to me either.

  • Everything is miraculous. Here I agree with Collingwood in Religion and Philosophy. A miracle cannot be the breaking of a natural law, since such a thing cannot be broken. A great artist like Beethoven follows no rules in the first place, or makes them up as he goes along; and he is like God in this way.
  • Natural law. That it cannot be broken is part of the very concept of natural law. Quantum phenomena and the theory of relativity have not in fact been brought under a single law; for Wigner, it may not be possible.
  • Mystery. Not only can we not define miracles, but (as we should have observed in the first place) we cannot even say when they happen. If like Wigner we call something miraculous, this means it cleanses our own doors of perception, in the sense of William Blake.
  • Definitions. In his treatment of miracle in Religion and Philosophy, Collingwood shows the futility of trying to define a term when you are not sure how to use it. He makes this futility explicit in The Principles of Art. If we are going to think about the use of mathematics in natural science, this means we ought to be mathematician, natural scientist, and philosopher; and not just “natural scientist,” but physicist and biologist, since if mathematics is effective in physics, it would seem to be ineffective in biology.
  • Being a philosopher. We are all philosophers, in the sense that Maugham describes in the story “Appearance and Reality,” if only we think. All thought is for the sake of action. This does not mean that thought occurs separately from an action and is to be judged by the action. We may value “pure” thought, such as doing mathematics or making music or living the contemplative life of a monk. This however moves me to a give a thought to the disaster of contemporary politics.
  • Philosophizing about science. For present purposes, compart­ment­al­ization of knowledge is a problem. So is the dominance of analytic philosophy, for suggesting (as one cited person seems to think) that big problems can be broken into little ones and solved independently. In mathematics, students should learn their right to question somebody else’s solutions to problems. In philosophy, the problems themselves will be our own. Philosophy as such cannot decide what the problems of physics or biology are, though it may help to understand the “absolute presuppositions” that underlie the problems. Philosophers quâ metaphysicians cannot determine once for all what the general structure of the universe is. This does not mean they should do “experimental philosophy,” taking opinion polls about supposedly philosophical questions. What matters is not what people say, but what they mean and are trying to mean. As Collingwood observes, metaphysics is an historical science.

For more on the last points, see a more recent article, “Re-enactment.” (This Preface added June 3, 2018.)


I am writing from the Math Village, and here I happen to have read that Abraham Lincoln kept no known diary as such, but noted his thoughts on loose slips of paper. Admired because he “could simply sit down and write another of his eloquent public letters,”

Lincoln demurred. “I had it nearly all in there,” he said, pointing to an open desk drawer. “It was in disconnected thoughts, which I had jotted down from time to time on separate scraps of paper.” This was how he worked, the president explained. It was on such scraps of paper, accumulating over the years into a diaristic density, that Lincoln saved and assembled what he described to the visitor as his “best thoughts on the subject.”

Thus Ronald C. White, “Notes to Self,” Harper’s, February 2018. My own notes to self are normally in bound notebooks, and perhaps later in blog articles such as the present one, which is inspired by the 1960 article called “The Unreasonable Effectiveness of Mathematics in the Natural Sciences,” by Eugene Wigner.
Continue reading

Romance

At the end of Shakespeare’s romance called The Tempest, Prospero plans to retire to Milan, where “Every third thought shall be my grave.” I remember these words, from reading the play in school and college. I also have thoughts of my grave. Their frequency may increase as the years pass. However, for each of those thoughts, I seem to have more that are based on memories of youth and childhood.


Continue reading

Thoreau by the Aegean

In a session of the 1986–7 senior laboratory at St John’s College in Santa Fe, for reasons that I do not recall, our tutor asked us students whether we had any heroes: for it was said that young people of the day no longer had heroes. None of the students at the table named a hero. I myself refrained from telling how I had once named a hero, when asked to do so in a high-school French class. This hero was the Buddha.

In recent times, I have listed my favorite writers as Somerset Maugham, Robert Pirsig, and R.G. Collingwood. I might add Charlotte Brontë and Mary Midgley to the list. I cannot add the Buddha, because he is not a writer. If my list were of writers and thinkers, I still could not add the Buddha: I cannot know him or any other thinker well enough, except through his own writing. But now I would add Henry David Thoreau. Continue reading

Books hung out with

The following are some books that I have read more times than I can remember. I list them in order of publication, though my first readings of them came in the opposite order:

  1. R. G. Collingwood, The Principles of Art (1938);
  2. Somerset Maugham, The Razor’s Edge (1944);
  3. Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance (1974).

I want to say some things about all of these books, and their writers. I intend especially to address the last book, which I shall call ZAMM. Continue reading